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Abstract
fMRI-constrained EEG/MEG source imaging can be a powerful tool in
studying human brain functions with enhanced spatial and temporal resolutions.
Recent studies on the combination of fMRI and EEG/MEG have suggested
that fMRI prior information could be readily implemented by simply imposing
different weighting factors to cortical sources overlapping with the fMRI
activations. It has been also reported, however, that such a hard constraint may
cause severe distortions or elimination of meaningful EEG/MEG sources when
there are distinct mismatches between the fMRI activations and the EEG/MEG
sources. If one wants to obtain the actual EEG/MEG source locations and uses
the fMRI prior information as just an auxiliary tool to enhance focality of the
distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI
constraint when severe mismatches between fMRI and EEG/MEG sources are
observed. The present study suggests an efficient technique to automatically
adjust the strength of fMRI constraint according to the mismatch level. The
use of the proposed technique rarely affects the results of conventional fMRI-
constrained EEG/MEG source imaging if no major mismatch between the
two modalities is detected; while the new results become similar to those of
typical EEG/MEG source imaging without fMRI constraint if the mismatch
level is significant. A preliminary simulation study using realistic EEG signals
demonstrated that the proposed technique can be a promising tool to selectively
apply fMRI prior information to EEG/MEG source imaging.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Current haemodynamic measurements, particularly functional magnetic resonance imaging
(fMRI), can provide excellent spatial resolution as high as 1 mm, but are temporally limited
from several seconds to several minutes. In contrast, EEG and MEG have superior temporal
resolutions compared to fMRI, which allow studies of the dynamics of neural networks that
occur on the order of tens of milliseconds. Unfortunately, the spatial resolution of EEG and
MEG does not match that of fMRI due to their limited numbers of spatial measurements
and ambiguity of electromagnetic inverse problems (Dale et al 2000). Therefore, effective
combinations of the two different kinds of modalities might provide new insight that could
not be achieved with either modality alone.

The approaches for combining fMRI results with EEG/MEG measurements can be
classified into two major categories: one is the equivalent current dipole (ECD) model and the
other is the distributed source model, which is sometimes called EEG/MEG cortical source
imaging.

The ECD model is the most common and straightforward approach to the multimodal
data fusion. The most widely used model is to assume a relatively small number of rotating
dipole sources, of which the initial positions are placed in fMRI activation foci (Ahlfors
et al 1999, Korvenoja et al 1999, 2001). The locations of the current dipoles are then adjusted
using nonlinear fitting algorithms such as the Levenberg–Marquardt algorithm (LMA), Nelder–
Meade downhill simplex searches and so on. The orientations and strengths of the ECDs are
determined using a least-squares algorithm. Wagner et al (2000) constrained the dipoles to
stay within a maximum distance from their seed points. A penalty term was added to the
error function if the distance from their seed points exceeded a predetermined maximum
distance. Orpitz et al (1999), Torquati et al (2005) and Vanni et al (2004) constrained the
dipole locations and/or orientations based on the anatomical and functional priors, and then
estimated temporal changes of the dipoles. These simple combinations of multimodal data
can solve conventional problems of the ECD model that the number and initial locations of the
ECDs cannot be estimated a priori. However, these approaches still have a potential problem.
When applying the ECD model, we should consider the effect of ‘crosstalk’, which represents
the influence of other dipoles to a dipole nearest to an actual source (Liu et al 1998, Fujimaki
et al 2002). From their simulation studies, it was observed that constraining multiple dipole
sources in all the possible fMRI activation foci might yield considerable error if some of the
ECD locations were not correctly estimated.

Contrary to the ECD model, the distributed source model or EEG/MEG source imaging
assumes a lot of current dipoles scattered in source spaces and the orientations and/or strengths
of the dipoles are determined using linear (L2 norm) or nonlinear (L1 norm) estimation
methods. Based on the basic idea, Dale and Sereno (1993) first proposed constraining the
source space into anatomically known locations (interface between white and grey matter of
the cerebral cortex extracted from MRI) and orientations (perpendicular to the cortical surface),
and weighting the estimate based on a priori information. In the paper, they first addressed the
possibility of the fMRI-guided EEG/MEG distributed source solutions. The distributed source
approaches can be readily incorporated with fMRI data and are more biologically plausible
than the ECD model since it uses anatomical prior information. The most straightforward
way to impose the fMRI constraint upon the distributed source reconstruction is to restrict the
source spaces to locations exceeding a threshold predetermined for fMRI statistical analyses
(George et al 1995), which is still being frequently used (Phillips et al 2005). According to
Liu et al’s (1998) study, however, this approach is very sensitive to some generators of EEG
or MEG signals that are not detected by fMRI, which have been usually referred to as ‘fMRI
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invisible sources’. Liu et al (1998) revealed that the distortion by the fMRI invisible sources
could be reduced considerably by just giving a constant weighting factor to the diagonal terms
of source covariance matrix in a linear inverse operator. They also suggested that the optimal
fMRI weighting for the non-activation regions should be 10% of the maximum value, in order
to minimize the distortion due to both fMRI invisible and visible sources. Some research
groups have been using different weighting methods and values, e.g. Wagner et al (2000,
2001) and Babiloni et al (2003, 2004), but their basic concepts remained the same as that
of Liu et al‘s approach in that they also gave different weighting factors to sources inside
and outside the fMRI active areas. Recently, Bayesian approaches have been successfully
applied to the multimodal imaging (Sato et al 2004, Phillips et al 2005) and demonstrated that
the approaches can reduce the influence of fMRI extra sources compared to the conventional
Wiener estimation approaches.

Using such an fMRI-constrained EEG/MEG source imaging technique, one could obtain
spatially more focalized EEG/MEG source distribution with a reduced number of spurious
sources as well as observe dynamic temporal changes of static fMRI sources (Liu et al 1998,
2002, Bonmassar et al 2001, Dale et al 2000, Lin et al 2004).

The fMRI-constrained distributed source reconstruction showed powerful advantages in
such applications when fMRI and EEG/MEG sources are corresponding well with each other.
In many practical cases, however, there sometimes exist significant mismatches between
fMRI and EEG/MEG sources. Vitacco et al (2002) investigated the difference between
fMRI and EEG/MEG sources using a semantic monitoring task. To deal with the different
spatiotemporal resolutions of the two modalities, they averaged their LORETA (low resolution
electromagnetic tomography) (Pascual-Marqui et al 1994) values across all temporal epochs,
and attempted to identify each LORETA local maximum with its nearest fMRI local maximum
in a statistically meaningful manner. They found that this could be done for group mean
data, but on an individual basis only half of the subjects showed significant correspondence
between the fMRI and LORETA patterns. These mismatches are bound to occur due to
the limited spatial sensitivity pattern of EEG/MEG sensors and the limited time resolution
of fMRI (Gonzalez Andino et al 2001, Ahlfors and Simpson 2004). Some source activity
may be located or oriented such that there is little electromagnetic field outside the head.
Examples of this are radially oriented sources in MEG and deep ‘closed field’ sources in EEG,
for which the activity patterns are such that the total macroscopic current cancels out. All
of these could generate significant fMRI but not in EEG or MEG. Furthermore, the fMRI
activations can be detected where there are no neuronal activities because the fMRI signal
is sensitive to parameters reflecting energy consumption. In practice, the brain consumes
energy for many more processes which are not directly linked to the neuronal activities, e.g.
neurotransmitter release and uptake, vesicular recycling, maintenance of membrane potentials
and so on (Rothman et al 1999). These kinds of sources are usually referred to as ‘fMRI extra
sources’, which have been generally ignored in many studies due to their little effect on the
fMRI-constrained source estimates (e.g., Ahlfors and Simpson (2004)). On the other hand,
some EEG/MEG sources cannot be detected in fMRI, which have been usually referred to as
‘fMRI invisible sources’. Some neuronal sources which are active only for a short time period
may be detected in EEG or MEG, but do not appear in fMRI results since fMRI integrates
brain activity over time. Another type of mismatch is originated from an intrinsic discrepancy
between fMRI and EEG/MEG due to the fundamental difference of haemodynamic and
electrophysiological processes (Disbrow et al 2000, Nunez and Silberstein 2000, Bonmassar
et al 2001), which can be called ‘fMRI displacement sources’.

If no fMRI mismatch sources exist, i.e. the fMRI activation regions can cover all
EEG/MEG generators, the EEG/MEG source distribution can be focalized by using the
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fMRI constraint. Moreover, the use of the fMRI prior information can reduce spurious or
phantom sources generated due to the ill-posedness of EEG/MEG inverse problems. On
the other hand, the EEG/MEG can provide temporal information for the static fMRI results.
However, it has been frequently reported that the fMRI activation regions are still sensitive
to the existence of some significant fMRI invisible sources or mismatch sources when the
conventional weighting approaches are applied (Fujimaki et al 2002, Ahlfors and Simpson
2004, Im et al 2005), and such mismatches may cause severe distortions or elimination of
meaningful EEG/MEG sources (Ahlfors and Simpson 2004, Im et al 2005, Liu et al 2006).

Therefore, if one tries to identify the actual EEG/MEG source locations and uses the fMRI
prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG
sources, it can be a smarter choice to weaken the strength of fMRI constraint or even not to
use the fMRI constraint at all when severe mismatches between fMRI and EEG sources are
observed (Vitacco et al 2002, Gonzalez Andino et al 2001).

In the present paper, we have proposed an alternative technique to automatically adjust
the strength of fMRI constraint considering the mismatch level. We controlled the weakness
of the fMRI constraint by adjusting the prior activation regions, not by changing the weight
values, since no absolutely satisfactory weighting values which can perfectly recover the
missing or distorted source distributions can be found (Im et al 2005). When there are
significant EEG/MEG sources lying outside fMRI activation regions, the prior regions are
automatically expanding to include the missing EEG/MEG sources into the prior activation
regions. Although some loss of the focality in the resultant EEG/MEG source images is
inevitable, we can estimate more plausible EEG/MEG source locations instead. The use
of the proposed technique rarely affects the results of fMRI-constrained EEG/MEG source
imaging if no major mismatch between the two modalities is detected; while the new results
become similar to those of conventional EEG/MEG source imaging without fMRI constraint,
if the mismatch level is significant. In the present study, we demonstrated the feasibility of
the proposed technique using artificially constructed EEG data, assuming different mismatch
levels. Since the inverse algorithms used for the EEG source imaging are identical to those for
the MEG source imaging, the proposed technique can also be applied to MEG studies without
any modifications.

2. Methods

2.1. Forward calculation and inverse estimation

In the present study, a realistic geometry head model was used for accurate EEG forward
calculation (He et al 1987, Hämäläinen and Sarvas 1989). A first-order node-based boundary
element method (BEM) was applied to construct a lead field matrix which relates source
locations to scalp electrodes. In the present study, three-layer tessellated boundary surfaces,
consisting of inner and outer skull boundaries and scalp surface, were generated using
CURRY5 for windows (Compumedics, Inc., El Paso, TX, USA) from structural MRI data.
The boundary element models consisted of 5372 boundary elements and 2748 surface nodes.
For all realistic simulations performed in the present study, the MNI standard brain atlas
(http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml#evans proc) was utilized.
The relative conductivity values of brain, skull and scalp were assumed to be 1, 1/16 and 1,
respectively (Haueisen et al 1997, Oostendorp et al 2000).

Since synchronously activated pyramidal cortical neurons, which are located
perpendicularly on the cortical surface, are widely believed to be the main EEG and MEG
generators, many recent studies have adopted this physiological phenomenon as a basic

http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml#evans_proc
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anatomical constraint in EEG or MEG source imaging (Dale and Sereno 1993, Kincses et al
1999, Dale et al 2000, Babiloni et al 2003). The source imaging with such an anatomical
constraint, which has often been called the cortically distributed source model or cortical
source imaging, resulted in elimination of spurious sources (Baillet et al 2001) as well as
reduction of crosstalk distribution (Liu et al 1998), compared to conventional volume-based
imaging techniques.

To impose the anatomical constraint, many dipolar sources are placed on the cortical
surface extracted and tessellated from structural MRI data. Although developments of medical
image processing and high resolution structural MRI enabled us to get high resolution cortical
surface with sub-millimetre modelling errors (Dale et al 1999, Fischl and Dale 2000), it is
computationally inefficient to use whole cortical surface vertices for the source reconstruction
purpose because of the increased underdetermined relationship between limited numbers
of sensors and larger numbers of source locations. To reduce the number of possible source
locations, a smaller number of vertices was downsampled from the cortical surface as regularly
as possible and used for source reconstruction purposes; whereas the original mesh information
was used only for visualization purposes (Dhond et al 2003, Lin et al 2004). In the present
study, about 15,000 vertices were downsampled from more than 400,000 original cortical
vertices.

To reconstruct the cortically distributed brain sources, we used a linear estimation
approach (Dale and Sereno 1993, Dale et al 2000). The expression for the inverse operator W
is

W = RAT(ARAT + λ2 C)−1, (1)

where A is a lead field matrix, R is a source covariance matrix and C is a noise covariance
matrix. The source distribution can be estimated by multiplying the measured signal at a
specific instant x by W. If we assume that both R and C are scalar multiples of identity matrix,
this approach becomes identical to minimum norm estimation (Liu et al 2002). In this study,
the source covariance matrix R was assumed to be a diagonal matrix, which means that we
ignored relationships between neighbouring sources. The minimum norm estimation is known
to have a bias towards superficial currents, caused by the attenuation of the lead fields with
increasing source depth. It is possible to compensate for this tendency by scaling the columns
of A with a function increasing monotonically with the source depth (Gorodnistky et al 1995,
Lin et al 2004). Each entry in the kth column of A was normalized by dividing it by

(
aT

k ak

)1/2
,

where ak is a kth column vector of the lead field matrix A. In this study, a pre-stimulus time
window was used to calculate C. λ2 is a regularization parameter and was determined using
the L-curve method (Hansen 1992).

We imposed the fMRI constraint by giving different weighting values to the diagonal
terms of R. Without considering fMRI priors, R is an identity matrix. When imposing fMRI
constraints, the diagonal terms of R were set to 1 for source locations within fMRI activation
regions; while they were set to 0.1 for source locations outside fMRI activation regions (Liu
et al 1998, 2002) in order to minimize distortion of source patterns stemming from both fMRI
visible and invisible sources (Liu et al 1998).

2.2. Automatic expansion of prior activation regions

As briefly explained before, fMRI-constrained EEG/MEG source imaging might result in false
EEG/MEG source estimates when the fMRI activation regions do not cover actual EEG/MEG
source locations. Figure 1 shows a schematic diagram to elucidate the influence of the false
fMRI information, where actual neuronal source locations are presented as vertical arrows.
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(a)

(b)

Actual Neuronal Source Locations

Actual Neuronal Source Locations

Solution of fMRI-Constrained MNE

Solution of fMRI-Constrained MNE

Solution of MNE

Solution of MNE

Anatomical Distance

Anatomical Distance

fMRI Activation Region

fMRI Activation Region

Figure 1. Schematic diagrams to elucidate the influence of mismatch sources upon the estimated
source images: (a) fMRI activation regions cover two actual source locations; (b) fMRI activation
regions do not cover one of the neuronal source locations. Solutions of fMRI-constrained source
imaging might be distorted when fMRI activation region cannot cover actual neuronal source
locations.

As presented in figure 1(a), the fMRI-constrained inverse solution tends to be more focalized
than the conventional linear inverse solution when fMRI activation regions cover the actual
source locations. As seen in figure 1(b), however, fMRI-constrained source imaging generally
yields distorted or false source estimates when there are mismatches between fMRI prior
activation regions and actual neuronal source locations. Such phenomena will be demonstrated
again through our simulation study which will be presented later.

Although one of the important aims of the fMRI-constrained EEG/MEG source imaging
is obtaining more focalized EEG/MEG source distribution and reducing spurious or phantom
sources which stem from ill-posed characteristic of EEG/MEG inverse problems, accurate
estimation of actual neuronal sources should not be underestimated. Thus, the authors suggest
that the missing source locations should be included in the prior activation regions when there
are severe mismatches between the two modalities. To implement such an idea, a criterion
was introduced to quantitatively assess the mismatches between the fMRI activation regions
and the EEG/MEG source locations.

We first reconstructed distributed EEG/MEG sources at every time slice without fMRI
a priori information and integrated the source intensities over the whole time window
considered. Since the integration over the whole time window might lose some significant
signal generators of which the durations are relatively short, we used a ‘partial integration’
defined as follows:

Ji = max

{∫ �t

0
ji(t) dt,

∫ 2�t

�t

ji(t) dt, . . . ,

∫ n�t

(n−1)�t

ji(t) dt

}
, (2)
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where Ji is the partially integrated source intensity at ith cortical vertex, ji(t) is the source
intensity at a time slice t and �t is the time interval when the whole time window is divided into
n sub-windows. In our simulation studies, �t was set as 30 ms when sampling rate was 500 Hz.
After the process, we can have the information on the locations of possible significant sources.

We then calculated an average of the partially integrated source intensities, QAVE, for all
cortical vertices which belong to the fMRI activation regions. The averaged value was used for
setting a threshold which was used when including source points outside the fMRI activation
regions into the new prior activation regions. The threshold was defined as

Thres = QAVE × p, (3)

where p is a user-defined scalar of which the range is between 0 and QMAX/QAVE, when QMAX

is the maximum value among the partially integrated source intensities. Then, the source
points outside the fMRI activation regions, of which the integrated source intensities exceed
Thres, were included in the new prior activation regions, while maintaining the original fMRI
activation regions. If one selects 0 as the p value, the prior activation regions will cover
the whole source space, resulting in normal linear inverse solutions without fMRI constraint.
In contrast, if a p value of QMAX/QAVE is selected, the prior activation regions will remain
unchanged because Thres equals QMAX. The introduction of this user-defined scalar can allow
the users to decide the strength of the proposed technique when the technique is implemented
in a general software package. The selection of large p values results in highly constrained
source images; whereas that of small p values results in widespread source distributions similar
to conventional linear inverse solutions without a priori information. In the present simulation
study, we set the p value as 1, which means that we used QAVE as the threshold value.

Figure 2 shows schematic diagrams to elucidate the proposed technique. When the
proposed technique is applied to an example in figure 1(a), where the fMRI activation
regions cover all actual neuronal sources, the extension of the prior activation regions is
not considerable because no significant activations exceeding QAVE are found outside the
fMRI activation regions (see figure 2(a)). Then, the resultant fMRI-constrained EEG/MEG
source estimates will not be much different from the conventional fMRI-constrained source
estimates. On the other hand, when the proposed technique is applied to an example shown in
figure 1(b), where one significant missing source exists outside the fMRI activation regions,
the regions around the missing source location are included in the new prior activation regions
since the EEG or MEG source estimates around the neuronal source are significant enough
to exceed the threshold value (see figure 2(b)). In such a case, the value of QAVE becomes
smaller than that of the previous case because there is no significant EEG/MEG source inside
one of the fMRI activation regions, which results in unnecessarily large extension of the prior
activation regions. Thus, the use of the proposed technique may lose the focality of the
source estimate which is one of the main advantages of fMRI-constrained EEG/MEG source
imaging. Instead of sacrificing the focalized source distribution, however, one can estimate
more accurate source locations. Therefore, the proposed technique can be a promising tool
allowing ‘selective’ application of fMRI prior information to EEG/MEG source imaging.

2.3. Simulation set-ups

Neuroelectromagnetic inverse problems (NIP) are hard to verify by in vivo experiments because
exact source locations inside the real human brain cannot be estimated a priori. For that
reason, artificially constructed forward data are widely used to validate EEG and MEG inverse
algorithms (Kincses et al 1999, Sekihara et al 2001). Hence, in the present simulation study,
we applied the proposed approach to artificially constructed EEG data.
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Figure 2. Schematic diagrams to elucidate the concept of the proposed technique: (a) when the
fMRI activation regions cover all the actual neuronal sources, the extension of the prior activation
regions is not considerable because no significant activations exceeding QAVE are found outside the
fMRI activation regions; (b) when one significant missing source exists outside the fMRI activation
regions, the neuronal source location is included in the new prior activation regions since the EEG
or MEG source estimates around the neuronal source are significant enough to exceed the threshold
value.

We adopted realistic conditions to construct the artificial EEG data. We assumed that 128
electrodes were attached to a subject’s scalp according to the extended 10–20 electrode system.
To utilize anatomical information, interface between white and grey matter was extracted from
MRI T1 images of an MNI standard brain and tessellated into 865 712 triangular elements
and 432 654 vertices. To extract and tessellate the cortical surface, we applied BrainSuite
developed in the University of Southern California, CA, USA (Shattuck and Leahy 2002). For
the accurate forward calculation, full head structures were taken into account and BEM was
applied.

Nowadays, for the forward simulations, generating artificial activation patches on a brain
cortical surface has been popularized instead of activating some point sources (Im et al 2003).
To generate the activation patches and construct a forward data set, a concept named virtual
area was adopted. An activation patch was generated using the following process: (1) a point
is selected as a seed of an activation patch area. (2) The patch area is extended by including
neighbouring vertices around the patch. (3) If the total virtual area of the cortical patch exceeds
an aimed surface area, the extension of the activation patch is terminated.

3. Simulations and results

For the present simulation study, we assumed three cortical patches as shown in figure 3, where
source 3 is hidden inside the Sylvain fissure of right hemisphere. The cortical activation patches
were made of sets of dipoles with constant current density and orientations perpendicular to
the cortical surface. Then, the current dipole moment at each vertex was calculated by the
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Figure 3. Locations of three cortical patches assumed to simulate a realistic EEG signal.

Figure 4. Simulated EEG signals with real background EEG signal (SNR = 7 dB).

product of the current density and the virtual area. The temporal variations of current density
of the three source patches were assumed as follows:

Source 1

J = −0.6 × 10−4(t − 500)2 + 0.6 (400 ms � t < 600 ms)
= 0 (0 ms � t < 400 ms, 600 ms � t < 800 ms)

Source 2

J = −0.6 × 10−4(t − 600)2 + 0.6 (500 ms � t < 700 ms)
= 0 (0 ms � t < 500 ms, 700 ms � t < 800 ms)

Source 3

J = −0.6 × 10−4(t − 700)2 + 0.6 (600 ms � t < 800 ms)
= 0 (0 ms � t < 600 ms).

After calculating electric potentials at the 128-channel electrodes assuming a 500 Hz
sampling rate, we added real background EEG signals, which were obtained from a pre-
stimulus period of a practical EEG experiment. The original signal without noise was scaled
in order for the signal-to-noise ratio (SNR) to be approximately 7 dB. Figure 4 shows the
artificial EEG signals with respect to time.
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Figure 5. Possible significant source map obtained from partial time integration of conventional
source estimates. The values were normalized to maximum.

To apply the proposed technique to the simulated EEG signals, we first reconstructed
source images using the conventional linear inverse operator without fMRI constraint at every
time slice (from 0 ms to 800 ms). The time-varying source intensity at every cortical vertex
was then partially integrated using (2), resulting in the possible significant source map shown
in figure 5. We can see from the figure that the partially integrated source distribution
correctly represents rough locations of the presumed cortical sources. Then, four different
cases of fMRI activation regions, of which the areas were nearly identical, were assumed as
follows:

Case 1. All fMRI activation regions cover the actual EEG source locations (perfectly
matching)—figure 6(a).

Case 2. Two fMRI activation regions cover actual EEG source locations (sources 1 and 2),
but the other does not cover source 3—figure 6(b).

Case 3. One fMRI activation region covers the location of source 1, but the other two
regions do not cover the actual source locations (sources 2 and 3)—figure 6(c).

Case 4. No fMRI activation regions cover the actual EEG source locations—figure 6(d).

For each case considered, we applied the proposed technique and generated new prior
activation regions. Figure 7 shows the comparison between original and modified prior
activation regions. It can be seen from the figures that the prior activation regions were
extended to include the EEG source locations, when there are significant mismatches between
fMRI prior activation regions and actual EEG sources.

We then compared the source distributions reconstructed at three time slices—500 ms,
600 ms and 700 ms, under three different conditions: (1) no fMRI constraint, (2) with original
prior activation regions and (3) with modified prior activation regions. Figure 8 shows the
reconstructed source distributions for case 1, where normalized current dipole power (sum of
squared dipole component strengths) was used for visualization purposes and noisy sources of
which the normalized power is below 0.1 were excluded in the visualization. The following
facts could be observed from the results: (1) more concentrated source distributions could
be estimated by using the fMRI prior information as a functional constraint; (2) when the
fMRI prior activation regions cover all the actual source locations, the source distributions
estimated with modified prior activation regions were similar to those estimated with original
prior activation regions.

Figures 9 and 10 show the source distributions reconstructed for case 2 and case 3,
respectively, when one or two EEG sources are mismatched with the original prior activation
regions. As seen from the source estimates, the use of false fMRI information can yield
severe distortion or misidentification of EEG source distributions. In contrast, the use of
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(a)

(b)

(c)

(d)

Figure 6. Four different cases of fMRI activation regions: (a) case 1—no mismatch source; (b)
case 2—one mismatch source; (c) case 3—two mismatch sources; (d) case 4—three mismatch
sources. Compare the fMRI activation locations with actual source locations in figure 4.

modified prior regions resulted in more widespread source images compared to the original
fMRI-constrained source images, but we could identify the actual source locations more
appropriately. It was also observed that the more mismatched sources yielded the wider source
distribution. Nevertheless, it is obvious that widespread but reasonable source distribution
is still more useful than the inaccurate source identification with focal distribution in many
practical applications.

Figure 11 shows the reconstructed source distributions for case 4, when all fMRI prior
regions do not coincide with the actual EEG source locations. All the sources were not correctly
estimated when the original prior activation regions were used; whereas the source distribution
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Figure 7. Comparison between original prior regions and modified prior regions. The numbers in
the first column represent the number of mismatch sources. Cortical surfaces shown in second and
third columns represent original and modified prior regions, respectively.

Table 1. Mean localization errors (mm) of the estimated current density maps. The values are
averaged errors of three source estimates at 500 ms, 600 ms and 700 ms. The mean error of the
‘no fMRI prior’ case was 9.72 mm.

Cases Original prior Modified prior

Case 1 8.05 8.24
Case 2 13.04 9.17
Case 3 17.33 9.46
Case 4 22.78 9.79

estimated with modified prior activation regions yielded source distributions similar to the
linear inverse solutions estimated without fMRI prior information, which means that one
should not expect the advantage of fMRI-constrained EEG source imaging any more when
there are significant mismatches between fMRI and EEG sources. In practice, however,
priority should be given to estimating accurate EEG source locations, as explained before.

Table 1 shows the localization error (distance between presumed source location and
peak position of current density estimates) averaged for three time slices. The localization
error increased as the mismatch became severe when original prior activation regions were
used; whereas the error was not influenced much by the mismatch level when modified prior
activation regions were used.
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With original
prior region

With modified
prior region

Figure 8. Normalized current dipole power at 500 ms, 600 ms and 700 ms, estimated for case 1
under three different conditions (no fMRI information, with original prior activation regions and
with modified prior activation regions). Sources that exceed 0.1 are visualized. SNR = 7 dB.

With original
prior region

With modified
prior region

Figure 9. Normalized current dipole power at 500 ms, 600 ms and 700 ms, estimated for case 2
under three different conditions (no fMRI information, with original prior activation regions and
with modified prior activation regions). Sources that exceed 0.1 are visualized. SNR = 7 dB.
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With original
prior region

With modified
prior region

Figure 10. Normalized current dipole power at 500 ms, 600 ms and 700 ms, estimated for case 3
under three different conditions (no fMRI information, with original prior activation regions and
with modified prior activation regions). Sources that exceed 0.1 are visualized. SNR = 7 dB.

With original
prior region

With modified
prior region

Figure 11. Normalized current dipole power at 500 ms, 600 ms and 700 ms, estimated for case 4
under three different conditions (no fMRI information, with original prior activation regions and
with modified prior activation regions). Sources that exceed 0.1 are visualized. SNR = 7 dB.
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In summary, the proposed technique can be an alternative tool which enables us to
selectively apply fMRI prior information to EEG/MEG source imaging. When there is
no significant mismatch between fMRI and EEG/MEG sources, the use of the proposed
technique rarely influences the advantage of the fMRI-constrained EEG/MEG source imaging.
When there are significant mismatches between the two different modalities, however, the
proposed technique weakens the influence of the fMRI constraint by modifying the prior
activation regions by compulsion, resulting in widespread but more reasonable source estimates
representing the actual EEG/MEG source locations correctly.

4. Conclusions

The present preliminary simulation study demonstrated that significant mismatches between
fMRI and EEG/MEG sources, which may cause misidentification of neuronal source
locations, can possibly be considered in the fMRI-constrained EEG/MEG source imaging
approaches. The proposed technique extended the prior activation regions by including
significant EEG/MEG sources, of which the adjacent areas were identified by partial time
integration of conventional source imaging results without a priori information, into the
modified prior activation regions. Such a strategy allowed users to ‘selectively’ apply the
fMRI constraint to the EEG/MEG source imaging. In other words, hard fMRI constraint
is applied only when there is no significant mismatch between the two modalities; while
weakened fMRI constraint is applied when there exist significant mismatches.

Although this preliminary simulation study has suggested an alternative approach to
consider the fMRI mismatch sources in EEG/MEG source imaging and showed a good
example of its possible applications, the present study may have some limitations. One
fundamental assumption of the proposed technique was that all the true source locations
are revealed in the unconstrained solution. Although we applied partially integrated source
intensity not to ignore EEG/MEG sources with short durations, it is still possible that some
EEG/MEG sources with relatively small intensities might not be reflected in the partially
integrated source image, which may result in missing activations at some time slices.

We have used partially integrated source intensity to estimate possibly significant source
activity. Typically, however, significance has been assessed using a statistic computed from
intensity such as the dynamic statistical parametric map (dSPM) (Dale et al 2000). It has been
reported that the effect of using fMRI weightings rather than unconstrained minimum norm is
much less in the dSPM than in the current density maps, since in addition to increasing source
strength in those areas where fMRI activity occurs these methods also increase noise variance
in these same locations. The use of statistical approaches to estimate possibly significant
source activity and comparison between the two methods will be performed in the future
study.

Contrary to the conventional fMRI-constrained EEG/MEG source imaging approaches
(Ahlfors and Simpson 2004, Liu et al 2006), the proposed technique is neither linear nor
straightforward since it requires an additional step to calculate partial integration of source
intensities at all time slices, resulting in increased computational cost and difficulties in data
analysis. Nevertheless, since the linear inverse operator in (1) was unchanged for the whole
time window after saving it in computer memory, the computational time could be considerably
saved.

In the present study, we have assumed four different cases according to the mismatch
levels between true source locations and fMRI activation regions. In future studies, we will
additionally perform different case studies such as artificial fMRI-extended sources and fMRI
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invisible sources. The efficiency and usefulness of the proposed technique will be verified
more robustly by Monte Carlo simulation studies and in vivo data analysis.
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