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Recently, an increasing number of researchers have endeavored to develop practical tools for diagnosing patients
with schizophrenia usingmachine learning techniques applied to EEG biomarkers. Although a number of studies
showed that source-level EEG features can potentially be applied to the differential diagnosis of schizophrenia,
most studies have used only sensor-level EEG features such as ERP peak amplitude and power spectrum for
machine learning-based diagnosis of schizophrenia. In this study, we used both sensor-level and source-level
features extracted from EEG signals recorded during an auditory oddball task for the classification of patients
with schizophrenia and healthy controls. EEG signals were recorded from 34 patients with schizophrenia and
34 healthy controls while each subject was asked to attend to oddball tones. Our results demonstrated higher
classification accuracy when source-level features were used together with sensor-level features, compared to
when only sensor-level features were used. In addition, the selected sensor-level features were mostly found
in the frontal area, and the selected source-level features were mostly extracted from the temporal area, which
coincide well with the well-known pathological region of cognitive processing in patients with schizophrenia.
Our results suggest that our approach would be a promising tool for the computer-aided diagnosis of
schizophrenia.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Diagnosis of schizophrenia

Schizophrenia is diagnosed primarily using diagnostic criteria from
the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), by
asking patients a series of questions to elicit information such as dura-
tion of illness and clinical symptoms (American Psychiatric Association,
2013). The clinical symptom severity of schizophrenia is measured
using clinical scales such as the Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1988). Various diagnostic tools can help psychia-
trists and clinical psychologists diagnose schizophrenia, but traditional
clinical diagnoses might be sometimes inaccurate because schizophre-
nia patients sometimes intentionally hide their symptoms, and
even experts sometimes have difficulty differentiating schizophrenia
from other mental illnesses due to similar symptoms (Lindstrom et al.,
1994; McGorry et al., 1995; Norman et al., 1996). Thus, many re-
searchers have sought to develop objective, quantitative biomarkers
that can enhance the overall accuracy of diagnosis with the aid of
ngineering,HanyangUniversity,
rea.
neuroimaging technologies. Among a variety of neuroimaging modali-
ties, electroencephalography (EEG) is regarded as one of the most
useful, thanks to its high temporal resolution and low cost.Many studies
report disrupted cerebral information processing in schizophrenia,
in the context of altered event-related potential (ERP) waveforms
(Odonnell et al., 1995; Ozgurdal et al., 2008; Turetsky et al., 1998;
Wang et al., 2003), disrupted functional connectivity patterns (Lynall
et al., 2010; Winterer et al., 2003), and reduced source activity
(Kawasaki et al., 2007; Kim et al., 2014; Pae et al., 2003; Wang et al.,
2010).

1.2. Machine-learning-based diagnosis of schizophrenia

Recently, an increasing number of researchers have attempted to
differentiate patients with schizophrenia from healthy controls using
machine learning (ML) methods with EEG biomarkers. Some of these
studies used sensor-level biomarkers, such as ERP amplitude and laten-
cy, as features for classification (Neuhaus et al., 2013; Neuhaus et al.,
2011). For example, Neuhaus et al. (2011) sought to identify schizo-
phrenia using amplitudes/latencies of N100 and P300 that were evoked
using visual and auditory oddball paradigms, respectively, and they re-
ported a fairly high classification accuracy of 72.4%. Later, the same
group (Neuhaus et al., 2013) reported improved classification accuracy
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of 79.0% using ERP components that were evoked in a visual target-
locked paradigm. Previous studies including the ones described above
used only sensor-level features such as ERP peak amplitudes and laten-
cies extracted from raw EEG signals. However, these sensor-level fea-
tures have an inherent limitation in that the signals can be distorted
and smeared due to volume conduction (Nolte et al., 2004; Nunez
et al., 1997; van den Broek et al., 1998), and thus potentially lose impor-
tant information regarding underlying cortical activity. In fact, some
EEG-based brain-computer interface (BCI) studies that classified differ-
ent brain activity patterns during mental imagery tasks have reported
increased classification accuracy using source-level features rather
than sensor-level features (Ahn et al., 2012; Kamousi et al., 2007; Qin
et al., 2004). However, these source-level features have not beenwidely
applied to clinical applications, and have especially never been applied
to machine-learning based diagnosis of schizophrenia.

1.3. Purpose of this study

In this study, we used both sensor-level features and source-level
features for the differentiation of schizophrenia patients and healthy
controls. We hypothesized that simultaneous use of both sensor-level
and source-level features would enhance classification accuracy. To test
this hypothesis, we used EEG data recorded while participants were
performing an auditory oddball task, of which the results were known
to be relatively consistent through a series of previous studies. The
P300 amplitude evoked by the auditory oddball paradigm is significantly
decreased in schizophrenia patients compared to healthy controls, and
source activity is also reduced in patients with schizophrenia. In the
present study, we compared classification accuracies for three different
cases: ML with sensor-level features only, ML with source-level features
only, and ML with combined two-level features.

2. Methods

2.1. Participants

Thirty-four patients with schizophrenia (20 males and 14 females)
and 34 healthy controls (14 males and 20 females) were recruited for
this study from the Psychiatry Department of Inje University Ilsan Paik
Hospital. Patients who had diseases of the central nervous system,
medical histories of alcohol and drug abuse, experience with electrical
therapy, mental retardation, or head injuries with loss of consciousness
were excluded from the study by initial screening interviews. The
patients were diagnosed based on the Structured Clinical Interview for
Diagnostic and Statistical Manual of Mental Disorders, 4th edition
(DSM-IV), Axis I Psychiatric Disorders. Their clinical symptoms were
also measured using the Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1988). Healthy controls were recruited from the
local community through local newspaper ads and posters. After an ini-
tial screening using the same criteria, control subjects were interviewed
using the Structured Clinical Interview for DSM-IV Axis II Disorders
Table 1
Demographic data of patients with schizophrenia and healthy controls.

Sch

Cases (N)
Gender (male/female)
Age (years) 33
Education 13
Illness duration (months) 51
Dosage of antipsychotics (chlorpromazine equivalents, mg) 511
Positive and Negative Syndrome Scale (PANSS)

Positive score 20
Negative score 19
General score 42
Total score 82
(Allen, 1998). All subjects provided written informed consent, and the
study protocol was approved by the Institutional Review Board of Inje
University Ilsan Paik Hospital. Table 1 presents demographic data for
patients and healthy controls.

2.2. EEG acquisition and pre-processing

The stimuli used for the auditory oddball paradigm were composed
of target tones with 1500 Hz tone frequency and standard tones with
1000 Hz tone frequency. The duration of each stimulus was set to
100 ms, and rising and falling times were set to 10 ms. Four-hundred
pure tone stimuli consisting of 15% target tones and 85% standard
tones were presented in random order with an inter-stimulus interval
(ISI) of 1500 ms. The participants were required to press a response
button when target tones were presented.

Scalp EEG data were recorded using a NeuroScan SynAmps2 ampli-
fier (Compumedics USA, El Paso, TX, USA) from 62 Ag/AgCl scalp elec-
trodes (FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, F1, FZ, F2, F4, F6, F8, FT7,
FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ, C2, C4, C6, T8,
TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4,
P6, P8, PO7, PO5, PO3, POZ, PO4, PO6, PO8, CB1, O1, OZ, O2, and CB2)
evenly arranged in a head cap according to a modified 10–20 electrode
system. The ground electrodewas placed on the forehead and the refer-
ence electrodes were attached at both mastoids. The vertical electrooc-
ulogram (VEOG) channels were located above and below the right eye
and the horizontal electrooculogram (HEOG) channels were placed
on the outer canthus of each eye. EEG data were recorded with a
0.1–100-Hz band-pass filter at a sampling rate of 1000 Hz, with 60 Hz
noise removed using a notch filter.

2.3. Sensor-level feature set

The EEG datawere processed using Scan 4.3 software (Compumedics
USA, El Paso, TX, USA). First, eye blinking artifacts were removed using
established mathematical procedures (Semlitsch et al., 1986), and
other gross artifacts were rejected by visual inspection. After artifact
rejection, the data were band-pass filtered at 1 to 30 Hz and epoched
from 100 ms before the target stimulus onset to 900 ms after the target
stimulus onset. The epochs were rejected if they contained significant
physiological artifacts (amplitude exceeding ±75 μV) at any site over
all electrodes. Artifact-free epochs were averaged across trials and elec-
trodes for ERP analysis. Among the 60 trials of target condition, the num-
bers of remaining epochs after artifact rejection were 53.09 ± 9.89 for
normal controls and 47.59 ± 13.86 for patients with schizophrenia (no
significant difference between two groups). P300 peak amplitude and
latency were computed across all electrodes, when P300 was defined
as a maximum between 250 and 500 ms post-stimulus (Bharath et al.,
2000; Hopfinger and Maxwell, 2005; Lazzaro et al., 1997). In total, 124
sensor-level features (P300 amplitude and latency of 62 electrodes)
were used as candidate sensor-level features.
izophrenia
patients

Healthy
controls

p

34 34
14/20 20/14 0.225

.91 ± 13.30 34.74 ± 13.16 0.798
.59 ± 9.06 13.97 ± 13.10 0.827
.88 ± 68.64
.10 ± 398.22

.70 ± 7.00

.03 ± 6.45
.67 ± 11.00
.36 ± 21.49



Table 2
Classification accuracies (unit: %) for three different feature sets: sensor-level, source-lev-
el, and combined feature sets. The last column shows the ratio of sensor-level features and
source-level features included in the selected combined feature set. Bold letters represent
the maximum accuracy of each feature set.

Number of
features

Accuracy Sensor feature/
source feature

Sensor level Source level Combined

1 75.00 69.12 79.41 0/100
2 67.65 79.41 76.47 0/100
3 72.06 80.88 76.47 0/100
4 77.94 85.29 72.06 25.0/75.0
5 69.12 77.94 82.35 20.0/80.0
6 79.41 83.82 72.06 16.7/83.3
7 79.41 63.24 86.76 28.6/71.4
8 76.47 67.65 83.82 37.5/62.5
9 63.24 67.65 80.88 44.4/55.6
10 80.88 79.41 80.88 50.0/50.0
11 69.12 69.12 79.41 45.5/54.5
12 76.47 66.18 80.88 50.0/50.0
13 67.65 82.35 77.94 58.3/41.7
14 73.53 72.06 75.00 57.1/42.9
15 72.06 58.82 88.24 53.3/46.7
16 64.71 66.18 76.47 56.3/43.7
17 70.59 73.53 72.06 58.8/41.2
18 72.06 61.76 70.59 61.1/38.9
19 72.06 67.65 82.35 63.2/36.8
20 75.00 55.88 70.59 65.0/35.0

Average ± s.d. 72.72 ± 4.92 71.40 ± 8.58 78.24 ± 5.19 50.5/49.5
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2.4. Source-level feature set

To extract source-level features, the datawere first bandpass filtered
at 1 to 55Hz. EEG cortical sourceswere estimated usingminimumnorm
estimation (MNE) implemented in the eConnectome Matlab toolbox
(He et al., 2011). A three-layer boundary element method (BEM)
model constructed from the MNI-152 standard template was used to
compute the leadfield matrix. Cortical current density values at 7850
cortical vertices were evaluated for every time point of each epoch.
To minimize potential loss of information contained in raw data,
segmented raw EEG data were used instead of averaged ERP data.
After estimating the cortical current density distribution at every time
point, 314 dipole sources were extracted as evenly as possible from
the original cortical surface model. We first selected dipoles by simply
skipping a constant number in the original vertices, and then manually
adjusted locations of some vertices when distributions of vertices at
certain areas were too dense or too sparse. Each of the 314 time-series
signals were averaged over time from 0 to 500ms after the target stim-
ulus onset. In total, 314 averaged cortical current density values were
used as candidate source-level features.

2.5. Feature selection and classification

To discriminate schizophrenia patients from healthy controls, three
different feature sets were tested: (1) the sensor-level feature set (124
features), (2) the source-level feature set (314 features), and (3) the
combined feature set (124 + 314 = 438 features). To select features
for classification, we compared Fisher's scores for each candidate fea-
ture, which is one of the most widely used feature selection methods
in many previous pattern classification studies. The number of features
ranged from1 to 20 (Lal et al., 2004; Li et al., 2009). The classification ac-
curacy was evaluated using leave-one-out cross-validation (LOOCV)
with support vector machine (SVM) classifier (Schlögl et al., 2005;
Weston, 1999), for each feature set. Fig. 1 illustrates the overall analysis
procedures adopted in this study.

3. Results

3.1. Maximum and average classification accuracy

The number of features varied from one to 20, for each of which the
classification accuracywas evaluated. Table 2 summarizes the classifica-
tion accuracies for three different feature sets with respect to the num-
ber of features used for the classification. This table also includes
information on the ratio of sensor-level features to source-level features
in the features selected from the combined feature set. A maximum
classification accuracy of 88.24% was reported for the combined-level
feature set, which was higher than those for the sensor-level feature
Fig. 1. The procedure for machine-learning
set (80.88%) and source-level feature set (85.29%). The classification ac-
curacies averaged over different numbers of features were reported to
be 78.24%, 72.72%, and 71.40%, for the combined feature set, sensor-
level feature set, and source-level feature set, respectively. Statistical
analysis using analysis of variance (ANOVA) showed significant differ-
ences among the three different cases (p = 0.003), and the following
post-hoc analysis revealed that the combined feature set yielded signif-
icantly enhanced classification accuracy compared to both the sensor-
level features (Bonferroni corrected p = 0.027) and the source-level
features (Bonferroni corrected p = 0.004) (note: all datasets passed
the normality test, see Fig. 2 for the distribution). Themaximum accura-
cy for the source-level feature set was higher than that for the sensor-
level feature set, whereas the average accuracy for the source-level
feature set was slightly lower than that for the sensor-level feature
set. This result originated from the high dependence of the source-
level features on the number of features. Contrary to the source-level
feature set, the combined feature set resulted in stable and reliable clas-
sification accuracies thatwere less dependent on the number of features
than the source-level feature set. It is noteworthy that even the mini-
mum accuracy was higher than 70% when two levels of features were
used simultaneously. Interestingly, the average ratio of sensor-level
-based classification of schizophrenia.



Fig. 2. Classification accuracies for three different feature sets. * p b 0.05, ** p b 0.01.
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features to source-level features in the combined feature set was nearly
equal to one, demonstrating that sensor-level and source-level features
harmoniously contributed to overall classification accuracy.

3.2. Spatial distribution of selected features

The maximum classification accuracy of 88.24% was achieved when
15 features were selected from the combined-level feature set. We in-
vestigated the spatial distribution of each of the selected features. We
found that eight sensor-level features and seven source-level features
were consistently selected inmost cross-validation iteration. The spatial
locations of eight sensor-level features and seven source-level features
are depicted in Fig. 3. The sensor-level features were mainly distributed
around the frontal area (AF4, F1, Fz, F2, F3, F8, FC6, FT8),where the P300
amplitudes in these electrodes were significantly decreased in patients
with schizophrenia compared to the healthy controls (p b 0.01, t-test;
Fig. 4). The selected source-level features were distributed mainly in
the left temporal area, and the values for cortical current density were
also decreased in schizophrenia patients compared to healthy controls
(not significant in statistical tests). Note that P300 latency features
were not selected in any cases listed in Table 2.

4. Discussion

In this study, we demonstrated that simultaneous use of sensor-level
and source-level feature sets could improve overall classification
accuracy in the machine-learning-based diagnosis of schizophrenia. A
maximum classification accuracy of 88.24% was obtained when the com-
bined feature set was used, whereas the highest classification accuracies
were 80.88% and 85.29% for sensor-level and source-level feature sets,
Fig. 3. The spatial distributions of sensor-level and source-level features selected from the com
features, (right). source-level features.
respectively. The average classification accuracy of the combined feature
set (78.24%) was also much higher than either the sensor-level feature
set (72.72%) or the source-level feature set (71.40%). By investigating 15
features selected from the combined feature set, we also found that
eight sensor-level features were located in the frontal area and seven
source-level features were distributed in the left temporal cortex.

4.1. Use of source-level features for classification

EEG has been regarded as the most appropriate neuroimaging
modality for investigating fast changes in brain activity due to its
superior temporal resolution over other imaging modalities. Although
a large number of researchers have used EEG to investigate neural
correlates underlying various mental disorders and to develop neuro-
physiological biomarkers to diagnose them, EEG has some intrinsic lim-
itations. First, sensor-level EEG signals might not reflect brain activities
right below the recording electrodes due to the low spatial resolution
originating from volume conduction (Nolte et al., 2004; Nunez et al.,
1997; van den Broek et al., 1998). Second, EEG data might have poor
signal-to-noise ratios (SNR) as they can be severely contaminated by
various noises and artifacts (Lange and Inbar, 1996; Lemm et al.,
2006). Based on the belief that EEG source imagingmight have benefits
on these issues, some previous EEG-based BCI studies investigated
whether the use of source-level features could enhance classification
accuracy and BCI performance.

Some EEG-based BCI studies showed that the use of source-level
features or the use of both source-level and sensor-level features
could significantly increase the BCI classification accuracy compared to
when only sensor-level features are used (Ahn et al., 2012; Kamousi
et al., 2007; Qin et al., 2004). Qin et al. (2004) and Kamousi et al.
(2007) reported that the source-level EEG signals are effective features
for classifying left- and right-hand motor imagery tasks because they
are free from the volume conduction effect. Ahn et al. (2012) also
demonstrated that using combined features could improve classifica-
tion accuracy because source-level features provide additional informa-
tion. However, to the best of our knowledge, source-level features have
not been applied to the classification of psychiatric disorders. Our
results indicate that the simultaneous use of sensor-level and source-
level features enhances the performance of machine-learning-based
diagnose of schizophrenia, coinciding well with the results of previous
BCI studies.

4.2. Selected sensor-level and source-level features

It is well-known that cognitive function in schizophrenia patients is
declined compared to healthy controls (Keefe et al., 2005; Kuperberg
and Heckers, 2000), which has been demonstrated by many studies
using various cognitive tasks (Egan et al., 1994; Karlsgodt et al., 2008;
Pakarinen et al., 2007). Among the experimental paradigms, the auditory
bined feature set when the classification accuracy was at a maximum: (left) sensor-level



Fig. 4. The P300 waveforms at eight selected sensor-level features shown in Fig. 3. The P300 amplitudes were significantly decreased in schizophrenia patients compared to healthy
controls at all electrodes (p b 0.05). Blue arrows indicate P300 peaks on ERP waveform.
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oddball task is most frequently used for evaluating cognitive decline in
patients with mental disorders because this task not only consistently
shows good performance in evaluating cognitive decline, but also is rel-
atively easy and time-efficient (Polich et al., 1986; Polich and Kok, 1995).

Many studies that use auditory oddball tasks to measure cognitive
decline in schizophrenia report altered event-related potential (ERP)
waveforms and reduced source activity at specific cortical regions in
schizophrenia. Previous studies reported disrupted characteristics of
P300 such as reduced P300 amplitudes and prolonged latency in schizo-
phrenia compared to healthy controls (Doege et al., 2009; Mathalon
et al., 2000). Mathalon et al. (2000) and Doege et al. (2009) found re-
duced P300 amplitude in the frontal area, which is now known as a
trait marker of schizophrenia. Some recent studies investigated brain
areas reflecting cognitive deficits in schizophrenia using EEG source im-
aging (Kawasaki et al., 2007; Kim et al., 2014). Kawasaki et al. (2007)
found that the source activities in schizophrenia patients were signifi-
cantly decreased compared to those in healthy controls, especially in
the superior temporal gyrus, medial frontal area and temporo-parietal
junction. Kim et al. (2014) reported altered P300 source activation in
middle temporal and precuneus, and also presented negative relation-
ships between source activation and symptom scores.

In the present study, we assessed the spatial distribution of sensor-
level and source-level features extracted from the combined feature
set when maximum classification accuracy was achieved. Among
these 15 features, eight features were selected from among the
sensor-level features and seven features were selected from among
the source-level features. All selected sensor-level featureswere located
in the frontal area, when the P300 amplitudes at the selected locations
were significantly reduced in schizophrenia patients compared to
healthy controls. This result agrees with previous auditory oddball
task studies that reported reduced P300 amplitude in the frontal area
(Doege et al., 2009; Mathalon et al., 2000). The frontal P300 amplitudes
are negatively correlated with cognitive function in patients with
schizophrenia, and reduced P300 amplitude generally indicates deficits
in cognitive function (Kim et al., 2003). Moreover, some studies have
suggested that the reduced frontal P300 amplitudes in schizophrenia
are more tightly associated with positive symptoms such as hallucina-
tion (Higashima et al., 2003; Mathalon et al., 2000).

On the other hand, all seven features selected from the source-level
feature set were spatially distributed in the left temporal area, when the
source activity was also decreased in patients with schizophrenia com-
pared to healthy controls. This result coincides with those of previous
EEG source imaging studies that reported reduced cortical source
activity around the left temporal area in patients with schizophrenia
(Kim et al., 2014; Mathalon et al., 2000; Pae et al., 2003; Turetsky
et al., 1998). Dysfunction of the left temporal area is known to indicate
declined cognitive functions in patients with schizophrenia. Some stud-
ies have demonstrated that reduced source activity in the left temporal
region is negatively correlated with negative symptoms of schizophre-
nia (Kawasaki et al., 2007; Kim et al., 2014). In summary, the features
selected from both sensor-level and source-level feature sets reflected
well-known electrophysiological dysfunction in schizophrenia, which
might contribute to the high classification accuracy of our approach.

4.3. Limitations

There are some limitations in the present study. First, all of the
patients were onmedication, and thus we could not control for possible
confounding effects of antipsychotic drugs. Second, we did not use
individual head models for EEG source imaging, as the individual MRI
data were not available. Nevertheless, our results demonstrate that the
use of source-level features together with sensor-level features could
significantly improve classification accuracy, and thus is a promising
approach for the computer-aided diagnosis of schizophrenia. In future
studies, we will apply our approach to other mental disorders such as
Alzheimer's disease, depression, and anxiety disorder. In addition, we
will further investigate the possibility of other types of features such as
high gamma activities, functional connectivity and graph theoretical in-
dices in the machine-learning-based diagnosis of schizophrenia.
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