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A B S T R A C T

Recently, objective and automated methods for the diagnosis of post-traumatic stress disorder (PTSD) have
attracted increasing attention. However, previous studies on machine-learning-based diagnosis of PTSD with
resting-state electroencephalogram (EEG) have reported poor accuracies of as low as 60%. Here, a Riemannian
geometry-based classifier, the Fisher geodesic minimum distance to the mean (FgMDM), was employed for PTSD
classification for the first time. Eyes-closed resting-state EEG data of 39 healthy individuals and 42 PTSD patients
were used for the analysis. EEG source activities in 148 cortical regions were parcellated based on the Destrieux
atlas, and their covariances were evaluated for each individual. Thirty epochs of preprocessed EEG were em-
ployed to calculate source activities. In addition, the FgMDM approach was applied to each EEG source cov-
ariance to construct the classifier. For a comparison, linear discriminant analysis (LDA), support vector machine
(SVM), and random forest (RF) classifiers employing source band powers and network features as feature
candidates were also tested. The FgMDM classifier showed an average classification accuracy of 75.240.80%. In
contrast, the maximum accuracies of LDA, SVM, and RF classifiers were 66.54 ± 2.99%, 61.11 ± 2.98%, and
60.99 ± 2.19%, respectively. Our study demonstrated that the diagnostic accuracy of PTSD with resting-state
EEG could be significantly improved by employing the FgMDM framework, which is a type of Riemannian
geometry-based classifier.

1. Introduction

Post-traumatic stress disorder (PTSD) is a mental disorder in which
dysfunctional brain activities are observed after a traumatic event. The
typical symptoms of PTSD as defined by the Diagnostic and Statistical
Manual of Mental disorders (DSM-V) include re-experiencing, avoid-
ance/numbing, and hyperarousal (Friedman et al., 2011). A large
proportion of individuals (60% of men and 50% of women) are exposed
to traumatic events more than once in their whole lifespan (Lobo et al.,
2015), and the lifetime prevalence of PTSD for the general population is

reported to be approximately 6.8% in the USA (Kessler et al., 2005). To
date, PTSD diagnosis is performed mostly based on self reports
(Friedman, 2015; Lobo et al., 2015; Meyer et al., 2018); however, with
the recent development of neuroimaging methods, unbiased, objective,
and automated methods for the diagnosis of PTSD have attracted in-
creasing attention (Christova et al., 2015; Liu et al., 2015). These au-
tomated diagnosis methods can not only provide a useful option for
early detection of chronic PTSD (Galatzer-Levy et al., 2014) but also
deliver a unique method to diagnose PTSD in infants or young children
from whom reliable self-reports can rarely be obtained (Scheeringa
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et al., 1995).
Electroencephalogram (EEG) is one of the most viable options to

implement the computer-aided diagnosis of PTSD because EEG has
proven to provide reliable biomarkers of brain dysfunction (Fingelkurts
and Fingelkurts, 2015). EEG also has several advantages over other
neuroimaging modalities such as functional magnetic resonance ima-
ging (fMRI) and positron emission tomography (PET) in that it exhibits
a high temporal resolution, is economical, and can be made portable
(Coburn et al., 2006; Lobo et al., 2015). Some previous studies have
reported close relationships between the features of EEG and PTSD. The
relationships were observed in event related potentials (ERPs) (Covey
et al., 2013; Karl et al., 2006; Lobo et al., 2014; Metzger et al., 2008),
quantitative EEG (qEEG) band powers especially in alpha (Imperatori
et al., 2014; Sheerin et al., 2018; Wahbeh and Oken, 2013), and alpha
asymmetry (Kemp et al., 2010; Rabe et al., 2006).

Although several potential EEG biomarker candidates for PTSD di-
agnosis have been reported, only one study succeeded in classifying
PTSD patients and healthy controls (HCs) with an accuracy over 70%.
Attias et al. (1996) argued that PTSD patients and HCs could be clas-
sified with fairly high accuracies of 95% and 85%, respectively, by
employing P3 peak amplitudes and P3 latencies as features for Fisher's
linear discriminant analysis (LDA). However, this result is very con-
troversial because data of only four representative subjects out of 20 in
each group were used to train the LDA classifier and no cross validation
was performed. Indeed, Falconer et al. (2008) reported that they clas-
sified PTSD and HC with an accuracy of 77.3% by employing P3 and
other physiological and cognitive measures as features; however, P3
features were never included in the top four predictors. Based on this
relatively more recent study, the diagnostic accuracy reported by Attias
et al. (1996) might be overestimated. On the other hand, machine-
learning-based classification of PTSD and HC with resting-state EEG is
generally more practical than that with ERPs such as P3 because
resting-state EEG can be recorded more easily than ERPs without the
requirement of repeated task trials. Indeed, resting-state EEG can be
recorded in a short period of time with economical portable EEG de-
vices (Casson, 2019; Park and Choi, 2019). However, Rozgic et al.
(2014) and Zhuang et al. (2014), who employed EEG spectral powers as
the features for the machine learning, reported low maximum area
under curve (AUC) of 0.62 and F-measures of 0.62, respectively.
Therefore, the performance of classifying PTSD and HC with resting-
state EEG needs to be further improved.

Recently, classification of EEG based on Riemannian geometry has
been actively studied (Congedo et al., 2017). A number of articles re-
garding diverse research topics, such as motor imagery BCI (Barachant
et al., 2011; Han et al., 2019; Barachant et al., 2013a, 2013b), sleep
stage classification (Li et al., 2012), mental fatigue detection (Roy et al.,
2014), auditory and tactile P300 BCI (Rutkowski et al., 2018), and
seizure detection (Yuan et al., 2016), have reported excellent perfor-
mance of Riemannian geometry-based classifiers compared to Eu-
clidean space-based traditional classifiers. Riemannian geometry-based
classifiers have also been successfully applied to diagnostic classifica-
tion of neuropsychiatric diseases. Gemein et al. (2020) classified HC
and patients with Alzheimer's disease, strokes, depression, or epilepsy
by applying Riemannian geometry-based classifiers with an average
accuracy of 85.87%. Sadatnejad et al. (2019) developed Riemannian-
based SVM by employing multiple instance learning, and classified at-
tention deficit hyperactivity disorder vs. bipolar mood disorder, schi-
zophrenia va. HC, and depression vs. HC, with fairly high classification
accuracies. Based on the above articles, it was expected that the per-
formance of classifying PTSD and HC with resting-state EEG might be
improved by employing Riemannian geometry-based classifiers.

In this study, we investigated whether a classifier based on
Riemannian geometry can increase the accuracy of classifying PTSD
and HC. Even though recent studies have demonstrated that
Riemannian geometry-based classifiers could be successfully applied to
various EEG classification problems (Congedo et al., 2017; Barachant

et al., 2010; Barachant et al., 2013a, 2013b), they have never been
applied to the classification of PTSD and HC with resting-state EEG. We
employed the Fisher geodesic minimum distance to the mean (FgMDM)
classifier as the Riemannian geometry-based classifier (Barachant et al.,
2010; Davoudi et al., 2017). To compare the classification performance
of the FgMDM classifier and various conventional classifiers, LDA,
support vector machine (SVM), and random forest (RF) classifiers em-
ploying source band powers and network measures as features were
also evaluated. The best classification results achieved by FgMDM and
the conventional classifiers were quantitatively compared to demon-
strate that the Riemannian geometry-based classifiers could yield better
performance than that of the conventional classifiers.

2. Methods

2.1. Participants

Forty-two patients with PTSD (5 men and 37 women; age:
40.12 ± 11.07) and thirty-nine HCs (8 men and 31 women; age:
41.15 ± 12.31) participated in this study. PTSD patients were diag-
nosed using the Structured Clinical Interview for DSM-V (SCID) Axis I
Psychiatric Disorders (American Psychiatric Association, 2013) by an
experienced psychiatrist. Clinician-Administered PTSD scale (CAPS)
(Blake et al., 1995) and PTSD checklist (PCL) (Weathers et al., 1993)
were used to evaluate psychiatric symptoms. HCs were recruited from
the local community through flyers, posters, or newspapers. Only in-
dividuals without mild traumatic brain injury, organic brain disorder,
and mood/anxiety disorder were allowed to participate in this study.
Participants who were older than 55 years, smokers, and those who had
a lifetime history of alcohol or drug abuse were excluded from this
study. All participants signed a written informed consent form ap-
proved by the Institutional Review Board of Inje University, Ilsan Paik
Hospital (IRB no. 2015–07-025). The demographic data of the partici-
pants are reported in Table 1. The independent t-test was employed to
compare the age, education years, CAPS, and PCL scores, and the chi-
square test was employed to compare the sex ratio.

2.2. EEG recording and pre-processing

All EEG data were recorded while the participants were in the re-
laxed state with their eyes closed for 3 min. The participants were asked
to sit on a chair in a slightly dim room and asked not to move or sleep
during the EEG recording. EEG signals were recorded using a
NeuroScan SynAmps amplifier (Compumedics USA, Charlotte, NC,
USA) with 62 Ag/AgCl electrodes mounted on NeuroScan Quik-Cap
according to the extended international 10–20 system. The sampling
rate was set at 1000 Hz, and the recorded EEG data were filtered using a
0.1–100 Hz bandpass filter. The impedances of all electrodes were ad-
justed not to exceed 5 kΩ. The ground electrode was placed on the
forehead, and the reference electrode was placed above Cz.

Table 1
Demographic characteristics of all study participants. The numbers in the
parentheses in the “sex” were the percentage of male or female in each group.

PTSD patients
(N = 42)

Healthy controls
(N = 39)

p

Age (years) 40.12 ± 11.07 41.15 ± 12.31 0.691
Sex 0.302
Male 5 (11.9) 8 (20.5)
Female 37 (88.1) 31 (79.5)

Education
(years)

12.67 ± 3.73 14.21 ± 3.11 0.048

CAPS 50.45 ± 13.72 7.31 ± 9.26 <0.001
PCL 46.83 ± 16.53 11.62 ± 10.31 <0.001

CAPS: Clinician-Administered PTSD scale; PCL: Post-traumatic Stress Disorder
Checklist.
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Raw EEG data were preprocessed using CURRY 7 software
(Compumedics USA, Charlotte, NC, USA) and MATLAB R2016b
(MathWorks, Natick, MA, USA). After re-referencing with the common
average reference, baseline correction was performed by removing each
channel's DC offset from the EEG data. Gross artifacts such as move-
ment artifacts were rejected by a trained researcher without any prior
information regarding the data. Eye movement or eye blink artifacts
were removed using the mathematical procedure implemented in
CURRY 7 (Semlitsch et al., 1986). The EEG data were then filtered by
employing a third order Butterworth IIR bandpass filter with forward-
backward zero phase filtering process with cutoff frequencies of 1 and
50 Hz. Whole EEG data were divided by several 2 s epochs, and epochs
containing significantly large physiological artifacts (amplitude > ±
75μV) were excluded from the analysis. For each epoch, powers of
theta band (4–8 Hz) and alpha band (8–12 Hz) were calculated using
fast Fourier transform (FFT). Then, the theta/alpha ratio was calculated
and averaged across 62 electrodes for each epoch. Any epoch in which
the theta/alpha ratio exceeded 1 was rejected because it was thought
that the participant felt drowsy or fell in sleep stage I when the theta
power exceeded alpha power (Šušmáková and Krakovská, 2007; Hsu
et al., 2013; Bareham et al., 2015). Note that theta power showed po-
sitive correlation with sleepiness and alpha power showed negative
correlation with sleepiness (Strijkstra et al., 2003). Finally, thirty
epochs were randomly selected from the remaining epochs and used for
further analyses.

2.3. Source localization

To estimate cortical source activities, a depth-weighted minimum
L2 norm estimator implemented in the brainstorm toolbox was used
(Tadel et al., 2011). A three-layer boundary element (BE) model was
constructed from the Colin27 standard brain template using the
OpenMEEG project software (Gramfort et al., 2010), and a leadfield
matrix was constructed with this BE model. The cortical current density
values at 15,002 cortical vertices were evaluated at every timepoint in
each epoch without a source orientation constraint. Noise covariance
was evaluated using whole epochs of each person. Only diagonal
components of noise covariance were used to calculate the weight of
each individual sensor. EEG source time-series in each of the 148 cor-
tical regions were parcellated based on the Destrieux atlas and then
extracted by applying principal component analysis (PCA) to the time-
series of all vertices included in each of the parcellated cortical regions.

2.4. Classification

A Riemannian geometry-based classifier as well as LDA, SVM, and
RF classifiers were used to classify PTSD and HC groups. The
Riemannian geometry-based classifier uses source covariance matrices
as features to classify each group (Barachant et al., 2010). This fra-
mework first extracts spatial covariance matrices (SCMs) for each class.
In this study, the size of each SCM was 148 × 148 because we em-
ployed 148 brain regions. The Riemannian average matrices were
computed using SCMs for each class and mapped onto the Riemannian
tangent space. Through this mapping process, called tangent space
mapping, the matrices can be vectorized and dealt with like Euclidean
objects. Tangent space mapping allows the use of advanced classifiers
that were available only in Euclidean space within the Riemannian
space (Congedo et al., 2017). In this study, FgMDM was selected as the
classifier, which was composed of the minimum distance to the mean
(MDM) method and the geodesic filter (Barachant et al., 2010; Davoudi
et al., 2017). The MDM method classifies each class by comparing the
distance between covariance of each subject and average covariance of
each class. The Riemannian mean and Riemannian distance were used
for the MDM method (Barachant et al., 2011). The geodesic filter was
employed to discard irrelevant information (noise) that might affect the
distance. Before applying the FgMDM classifier, the entire frequency

band (4–50 Hz) was divided into five sub-bands: theta (θ: 4–8 Hz),
alpha (α: 8–12 Hz), low beta (β1: 12–18 Hz), late beta (β2: 18–30 Hz),
and gamma (γ: 30–50 Hz). Then, fifteen frequency bands were formed
by successively merging neighboring frequency bands (θ / α/β1 / β2 /
γ / θ + α / α + β1 / β1 + β2 / β2 + γ / θ + α + β1 / α + β1 + β2 /
β1 + β2 + γ / θ + α + β1 + β2 / α + β1 + β2 + γ /
θ + α + β1 + β2 + γ). The source time-series corresponding to each
of the 15 frequency bands was found by applying a bandpass filter.
SCMs were then evaluated using the filtered source activities for each of
the 15 frequency bands. A 10-fold cross-validation was performed re-
peatedly 10 times to calculate the average classification accuracy,
sensitivity, specificity, and AUC. In each cross-validation, each parti-
cipant's 30 SCMs, each corresponding to each epoch, were tested and
the class into which more SCMs were classified was determined as the
class of the participant. The AUC of FgMDM were calculated based on
the methods in the Barachant and Congedo (2014). The accuracy,
sensitivity, specificity, and AUC values were averaged within each 10-
fold cross-validation, and averaged across the 10 repeated runs. The
Covariance Toolbox was used for these analyses (https://github.com/
alexandrebarachant/covariancetoolbox). The source code for this ana-
lysis is available at Figshare (https://figshare.com/s/
a8e72f2c1202931b7779).

Source band powers and their global/nodal network measures were
used as the features of the traditional classifiers (LDA, SVM, and RF).
The network measures were employed to compensate for the informa-
tion of connectivity among the cortical regions, which was inherently
considered in the covariance matrix used in the FgMDM. The global
network measures were clustering coefficient, path length, global effi-
ciency, and global strength (Rubinov and Sporns, 2010). The nodal
network measures were nodal clustering coefficient and eigenvector
centrality (Rubinov and Sporns, 2010; Ruhnau, 2000). The frequency
bands were separated into eleven sub-frequency bands: theta (4–8 Hz),
alpha (8–12 Hz), beta (12–30 Hz), gamma (30–50 Hz), low alpha
(8–10 Hz), high alpha (10–12 Hz), low beta (12–18 Hz), mid beta
(18–22 Hz), high beta (22–30 Hz), early beta (12–22 Hz), and late beta
(18–30 Hz). We divided the frequency bands more specifically to im-
prove the overall classification performance by generating more num-
bers of feature candidates. To extract the source power spectral density
(PSD) features, FFT was applied to source time-series of each of the 148
regions. The average spectral power of each cortical region at each
frequency band was calculated by averaging the spectral powers of the
30 selected epochs. Consequently, 1628 spectral power features (148
regions × 11 frequency bands), 44 global network measures (4 network
measures × 11 frequency bands), and 3256 nodal network measures (2
network measures × 148 regions × 11 frequency bands) were eval-
uated for each trial. Each of the three different feature types was in-
dependently employed for the classification, and all features (4928
features in total) were also used for the classification. A 10-fold cross-
validation was performed 10 times to calculate the average classifica-
tion accuracy. For each cross validation, Fisher scores were evaluated to
select the best feature subset for the current training dataset, and only 1
to 20 features with the highest Fisher scores were selected to prevent
potential over-fitting of the data (Shim et al., 2016). Classification was
performed with LDA, SVM with radial kernel basis function, and RF
classifiers (Breiman, 2001; Duda et al., 2012; Scholkopf et al., 1997).
The accuracies, sensitivities, specificities, and AUCs were averaged in
10-fold cross-validation and averaged across the 10 times runs. The
average accuracy, sensitivity, specificity, and AUC were calculated per
1 to 20 selected features. A MATLAB toolbox, prtools 5.3.3 (http://
37steps.com), was used for these analyses.

3. Results

The accuracy, sensitivity, specificity, and AUC obtained from
FgMDM, LDA, SVM, and RF methods are shown in Table 2. Only the
maximum accuracy for the LDA, SVM, and RF methods was presented
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among the 20 classification results corresponding to 1 to 20 features,
and the sensitivity, specificity, and AUC yielding the maximum classi-
fication accuracy were presented. The FgMDM classifier outperformed
other conventional classifiers in terms of the average classification ac-
curacy. The average classification accuracy of the FgMDM classifier
with full-band source covariance was reported to be 73.09 ± 2.08%.
The minimum and maximum accuracies were 69.14% and 76.54%,
respectively. The average sensitivity and specificity were
68.72 ± 3.78% and 77.14 ± 2.30%, respectively. The AUC was
0.7970 ± 0.0141. The conventional classifiers showed relatively lower
classification accuracies. The maximum classification accuracy of LDA
was 66.42 ± 2.65% when source band powers were used as features.
The sensitivity was 73.57 ± 3.06%, and the specificity was
58.72 ± 3.30%. The AUC was 0.5534 ± 0.0456. The maximum
classification accuracy of SVM was 64.57 ± 2.26% when all the fea-
tures were used, and its sensitivity, specificity, and AUC were
75.00 ± 3.02%, 53.33 ± 4.32%, and 0.6432 ± 0.0613, respectively.
The maximum classification accuracy of the RF method was
61.98 ± 3.63%, when source band powers were used as features. The
sensitivity, the specificity, and AUC were 67.86 ± 3.41%,
55.64 ± 5.41%, and 0.6635 ± 0.0659 respectively.

Table 3 shows the frequency bands of the top ten FgMDM classifiers
that yielded the highest classification accuracy. The maximum accuracy
was reported to be 73.09 ± 2.08% when the whole band SCM was
employed. The second highest accuracy was 72.72 ± 2.21% when the
feature was 8–50 Hz band SCM, while the third highest accuracy was
72.59 ± 2.08% when the feature was 4–30 Hz band SCM. The accu-
racy tended to increase with increasing bandwidth.

4. Discussion

In this study, we classified PTSD patients and HCs by applying a

Riemannian geometry-based FgMDM classifier to resting-state qEEG
data for the first time. The performance of the FgMDM classifier was
compared with those of conventional classifiers—LDA, SVM, and
RF—in terms of classification accuracy. The FgMDM classifier out-
performed other conventional classifiers and exhibited the best average
classification accuracy of 73.09% and the best AUC of 0.7970. The
classification accuracies of the conventional classifiers (LDA, SVM, and
RF) were about 7–12% lower than that of the FgMDM classifier. The
maximum classification accuracies of LDA, SVM, and RF were reported
to be 66.42%, 64.57%, and 61.98%, respectively.

There were only two articles that attempted to classify PTSD and HC
by employing spectral powers as features (Rozgic et al., 2014; Zhuang
et al., 2014). Rozgic et al. (2014) classified PTSD and HC by employing
the EEG, ECG, GSR, motion, speech as features. They employed SVM as
the classifier. When only EEG features were used, the AUC was 0.62. In
our results, the best AUC of FgMDM was 0.7970, and the best AUC of
LDA, SVM, and RF were 0.5031, 0.5366, and 0.4708, respectively. The
FgMDM showed much larger AUC than that of Rozgic et al. (2014).
Zhuang et al. (2014) classified PTSD and HC by employing speech, EEG,
and its combination as features, and reported the performance in terms
of F-measures. When only EEG features were used for SVM classifica-
tion, the best reported F-measure was 0.62. In our results, the F-mea-
sure of FgMDM was 0.7109, and F-measures of LDA, SVM, RF were
0.6182, 0.6408, and 0.5933, respectively. The FgMDM showed the best
F-measure value, whereas the F-measures of conventional classifiers
were almost equal to the result of Zhuang et al. (2014).

Riemannian geometry-based classifiers have been reported to im-
prove the classification accuracy in various EEG classification studies
and have been found to outperform conventional classifiers in sleep
stage detection (Li et al., 2009), motor imagery-based brain-computer
interface (Barachant et al., 2011), steady-state visual evoked potential-
based brain-computer interface (Kalunga et al., 2016). Riemannian

Table 2
The average classification accuracy of FgMDM classifier and the maximum accuracies of the conventional classifiers.

Classifiers Featurea Accuracy (%) Sensitivity (%) Specificity (%) AUC

FgMDM Source covariance (1) 73.09 ± 2.08 68.72 ± 3.78 77.14 ± 2.30 0.7970 ± 0.0141
LDA All (3) 63.95 ± 3.33 71.67 ± 4.69 55.64 ± 3.43 0.5357 ± 0.0297

Source band power (3) 66.42 ± 2.65 73.57 ± 3.06 58.72 ± 3.30 0.5534 ± 0.0456
Global network (1) 54.69 ± 1.93 66.90 ± 2.08 41.54 ± 2.91 0.4969 ± 0.0279
Local network (6) 58.02 ± 3.19 65.24 ± 4.38 50.26 ± 4.22 0.5045 ± 0.0300

SVM All (2) 64.57 ± 2.26 75.00 ± 3.02 53.33 ± 4.32 0.6432 ± 0.0613
Source band power (3) 62.35 ± 4.21 63.81 ± 5.81 60.77 ± 4.99 0.6252 ± 0.0459
Global network (16) 51.73 ± 3.05 80.48 ± 3.86 20.77 ± 5.60 0.4634 ± 0.0672
Local network (18) 52.22 ± 0.83 98.33 ± 1.15 2.56 ± 1.71 0.5950 ± 0.0433

RF All (11) 61.98 ± 3.63 67.86 ± 3.41 55.64 ± 5.41 0.6635 ± 0.0659
Source band power (14) 60.74 ± 2.31 67.86 ± 4.38 53.08 ± 5.80 0.6310 ± 0.0497
Global network (20) 54.20 ± 4.49 58.81 ± 5.94 49.23 ± 4.49 0.5292 ± 0.0613
Local network (4) 54.44 ± 3.79 59.76 ± 5.08 48.72 ± 5.27 0.5355 ± 0.0609

FgMDM: Fisher geodesic minimum distance to the mean; LDA: Linear discriminant analysis; SVM: Support vector machine; RF: Random forest.
a The numbers in the parentheses represent the number of features when the maximum accuracy was achieved.

Table 3
The classification accuracies of the FgMDM classifier with respect to different frequency bands.

Band Accuracy (%) Sensitivity (%) Specificity (%) AUC

4–50 Hz 73.09 ± 2.08 68.72 ± 3.78 77.14 ± 2.30 0.7970 ± 0.0141
4–18 Hz 71.98 ± 3.86 66.67 ± 3.82 76.90 ± 4.63 0.7666 ± 0.0288
4–30 Hz 72.59 ± 2.08 67.69 ± 2.48 77.14 ± 3.01 0.7907 ± 0.0145
8–18 Hz 68.52 ± 2.75 62.82 ± 4.72 73.81 ± 3.17 0.7524 ± 0.0233
8–30 Hz 70.49 ± 2.36 64.10 ± 2.96 76.43 ± 2.37 0.7722 ± 0.0157
8–50 Hz 72.72 ± 2.21 66.67 ± 2.96 78.33 ± 2.62 0.7903 ± 0.0192
12–30 Hz 71.23 ± 1.93 66.92 ± 3.51 75.24 ± 2.01 0.7578 ± 0.0312
12–50 Hz 70.99 ± 2.12 63.59 ± 5.10 77.86 ± 1.15 0.7743 ± 0.0099
18–30 Hz 70.00 ± 5.04 67.95 ± 8.13 71.90 ± 4.17 0.7482 ± 0.0114
18–50 Hz 72.10 ± 2.92 66.41 ± 4.75 77.38 ± 2.31 0.7752 ± 0.0137
30–50 Hz 70.25 ± 2.36 64.62 ± 2.65 75.48 ± 3.18 0.7825 ± 0.0107
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geometry-based classifiers are known to better reflect the complex and
non-linear characteristics of EEG than the conventional classifiers. Ac-
cording to Horev et al. (2015), EEG signals could not be modeled just
with simple Gaussian assumption as the generation of EEG signals in-
volves complex and non-linear phenomena. Moreover, because the
etiology of PTSD is known to be multi-causal, multi-modal, and com-
plex (Galatzer-Levy et al., 2014), Riemannian geometry-based classi-
fiers are more appropriate for classification of PTSD patients and HCs
than conventional classifiers. Fig. 1 shows examples of feature dis-
tributions of the conventional methods and the FgMDM method.

Even though SCM features are used, the classification accuracy can
depend on methods for evaluating the distance between each partici-
pant's SCM and the average SCMs of each class. We tested three dif-
ferent methods to calculate the distances—Euclidean distances,
Riemannian distances on MDM without geodesic filter, and Riemannian
distances that were calculated from geodesic filtered SCMs in FgMDM
methods. On the abscissa of Fig. 2, the distances between each parti-
cipant's SCM and the average SCM of PTSD patients are shown, whereas
on the ordinate of Fig. 2, the distances between each participant's SCM
and the average SCM of HC are shown. The distances from each class

could be clearly differentiated when the FgMDM classifier was em-
ployed (right). The distances could also be differentiated fairly well
with the MDM without the geodesic filter (middle). However, when the
same process was applied on Euclidean space, differentiating each class
by solely using the distance value (left) was difficult. These results
suggest that some information differentiating PTSD and HC might not
be accessible on Euclidean distance but might be accessible on the
Riemannian distance, as discussed by Barachant et al. (2011).

A geodesic filter might also be an important factor that can further
increase the classification accuracy. Barachant et al. (2010) proposed
Fisher geodesic discriminant analysis which is an extension of Fisher
LDA applied to the tangent space. Employing a geodesic filter can be a
solution to overcome the disadvantages of MDM; MDM performs poorly
in high dimension (Congedo et al., 2019) and is known to be vulnerable
to noise (Davoudi et al., 2017). Table 4(a) compares the performances
of the MDM and FgMDM approaches, in terms of classification accu-
racy, and shows that the FgMDM approach outperformed the MDM
approach.

Extracting source-level features instead of sensor-level features
might also contribute to the enhancement of classification accuracy.

Fig. 1. Examples of feature vector distributions used for (a) conventional classifiers and (b) FgMDM method with an applied geodesic filter. Dimensionality of each
figure was reduced using principal component analysis (Harandi et al., 2017) and the supervised dimensionality reduction method (Harandi et al., 2017; Rodrigues
et al., 2017).

Fig. 2. Distances between each participant's SCM and the average SCM of each group evaluated using the three different methods (Euclidean distance, Riemannian
distance (MDM), and FgMDM). The distances between SCM of each subject and the average SCM of PTSD patients are shown on the abscissa, whereas the distances
between SCM of each subject and the average SCM of HC are shown on the ordinate. The dotted line indicates the cases when the distances from PTSD and HC group
averages are the same.
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One of the disadvantages of EEG is the low spatial resolution origi-
nating from the volume conduction effect. Poor signal to noise ratio due
to artifacts and noises is also a disadvantage of EEG. EEG source ima-
ging could be an alternative to circumvent these disadvantages. Various
studies have reported increased classification performance by em-
ploying source-level EEG features, examples of which include the motor
imagery-based brain-computer interface (BCI) (Ahn et al., 2012), ERP-
based BCI (Goel et al., 2011), and EEG-based automatic diagnosis of
schizophrenia (Shim et al., 2016). According to Ahn et al. (2012), some
information could be visible only in the source space because source
imaging enables filtering out some noise components. Table 4(b) shows
the effect of using source-level features on the classification perfor-
mance. The SCMs from the sensor-level EEG signals were computed
based on the same method used for the computation of source-level
SCMs. The size of each SCM was 62 × 62 as 62 electrodes were used for
EEG recording. The performance of the FgMDM classifier with SCMs
from EEG source activities was superior to that with SCMs from the
sensor-level EEG signals, in terms of accuracy, sensitivity, and specifi-
city.

Table 3 presents the changes of the classification performance with
respect to the different frequency bands. The best performance was
obtained when the whole frequency band was used. Indeed, many
previous studies have reported that EEG recorded from patients with
PTSD generally show abnormalities in almost all frequency bands. For
example, in the theta band, increase of theta activity in the parietal
lobes and decrease of theta band activity over temporal lobe, frontal
lobes, and central lobe in PTSD patients were observed (Imperatori
et al., 2014; Todder et al., 2012; Cowdin et al., 2014; Woodward et al.,
2000). In alpha band, Imperatori et al. (2014) reported the increase of
alpha band connectivity in PTSD patients, and Wahbhe et al., (2013)
reported higher alpha frequency peak in PTSD. In beta band, PTSD
patients showed increased beta band power in REM sleep stage
(Woodward et al., 2000) and exhibited decrease of nodal degree and
nodal efficiency in frontal and central regions (Lee et al., 2014). In
gamma band, Lee et al. (2014) reported decrease of nodal degree and
nodal efficiency in frontal and central lobe, and Ehlers et al. (2006)
reported significant increase in frontal EEG gamma band activity in
PTSD patients.

There are some limitations in our present study. First, the years of
education were different between PTSD and HCs, although this factor is
known not to be directly related with PTSD symptoms (Besser and
Neria, 2009). Second, medication effects were not controlled in this
study. Because all subjects were not in the first episode, some of them
had undergone treatment with medication.

5. Conclusion

In this study, we demonstrated that a Riemannian geometry-based
classifier could elevate the accuracy of classification of PTSD patients
and HCs. Our findings also suggest that PTSD could be classified using
resting-state EEG with significantly improved accuracy by adopting
EEG source imaging and employing a novel type of classifiers such as

the FgMDM classifier. Further studies are required to generalize our
findings by applying the Riemannian geometry-based classifier to the
diagnosis of other psychiatric diseases and to enhance classification
performance by employing new classification methods or source loca-
lization algorithms.
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