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Real-Time “Eye-Writing” Recog-
nition Using Electrooculogram
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Abstract—Eye movements can be used as alternative inputs for
human-computer interface (HCI) systems such as virtual or aug-
mented reality systems as well as new communication ways for
patients with locked-in syndrome. In this study, we developed a
real-time electrooculogram (EOG)-based eye-writing recognition
system, with which users can write predefined symbolic patterns
with their volitional eye movements. For the “eye-writing” recog-
nition, the proposed system first reconstructs the eye-written traces
from EOG waveforms in real-time; then, the system recognizes
the intended symbolic inputs with a reliable recognition rate by
matching the input traces with the trained eye-written traces of di-
verse input patterns. Experiments with 20 participants showed an
average recognition rate of 87.38% (F1 score) for 29 different sym-
bolic patterns (26 lower case alphabet characters and three func-
tional input patterns representing Space, Backspace, and Enter
keys), demonstrating the promise of our EOG-based eye-writing
recognition system in practical scenarios.

Index Terms—Assistive devices, biomedical signal processing,
electrooculography (EOG), human-computer interaction (HCI),
pattern analysis, rehabilitation.

I. INTRODUCTION

H UMANS use voluntary eye movements to fixate and
track visual stimuli [1], [2], and healthy individuals can

control their eye movements of their own volition [2]. The
modern eye tracking technologies have allowed human eye
movements to be used as an input modality for human-com-
puter interaction (HCI) applications [3]. For example, Kaufman
et al. designed a command input system in which the horizontal
and vertical movements of the users' eyes were used to select
a menu item from a 3 2 boxed menu on a computer screen
[4]. Tomita et al. proposed a system where a mouse cursor on
a computer monitor could be controlled by users' voluntary
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eye movements, and a desired item at which the cursor was
pointed could be selected by rapidly blinking their eyes [5].
Wijesoma et al. developed an assistive mobile robot controller
using saccadic eye movements and eye blinks [6]. Deng et al.
implemented several eye movement-based HCI applications
such as a TV remote controller, a game, and an eyesight test
application [7].
One of the possible applications of these eye move-

ment-based HCI systems is a communication platform for
patients with amyotrophic lateral sclerosis (ALS), generally
known as Lou Gehrig's disease. ALS is a neurodegenerative
disease characterized by the progressive loss of motor neurons
in the brain [8]. Patients with ALS suffer from progressive
paralysis of the muscles of the limbs and trunk, as well as
those used for speech. Thus, patients with severe ALS cannot
use their hands or voices to communicate with other people.
Nevertheless, the muscles associated with eye movements are
less affected by ALS than are other muscles, as the oculomotor
nuclei are believed to be resistant to the neurodegenerative
effects of ALS due to the increased GABAergic transmission
[9]. Therefore, eye movements can be utilized as an alternative
communication way for patients with ALS. Indeed, an optical
eye tracker-based “eyeball mouse” is the most popular device
for patients with ALS to communicate with their caregivers
and computers.
To implement an eye movement-based HCI system, the

video-based measurement of eye locations has been most
widely used. Video-based eye tracking methods use reflected
light from the eyes, which can be detected by an optical sensor
or a camera [10], [11]. These methods provide very sensitive
and accurate estimations of gaze directions compared with other
eye tracking methods. However, this type of sensing requires
ample image processing; thus, its computational cost is higher
than those of other methods. In addition, some devices based on
this sensing method not only occlude a part of the user's view,
but also are influenced by surrounding illumination [12], [13].
Electrooculogram (EOG)-based eye tracking is an alternative to
video-based eye tracking. EOG refers to the electric potentials
recorded around the eyes and reflects changes in eye positions.
In contrast to the video-based eye trackers, EOG-based eye
trackers require relatively lower computational power, and
they are not influenced by ambient lighting conditions [14].
Consequently, EOG can be used to develop relatively low-cost
and low-power embedded eye-tracking systems for various
purposes such as wheelchair controllers [15], [16], communi-
cation (typing) systems [17], and human activity monitoring
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systems with wearable EOG goggles [18]. In this study, the
EOG-based eye tracking method was exploited.
As aforementioned, HCI systems based on EOG-based eye

tracking utilize various features such as the start and end times
of eye movements [15]–[18], eye blinks [17], [18], and course
directional change in gaze [17], [18]. Although these systems
might be useful in some applications, they have limitations in
providing diverse input patterns to general HCI systems. One
of the alternative methods to generate more numbers of input
patterns is to recognize and classify “eye-writing” patterns from
EOG signals recorded while users are writing predefined sym-
bolic trace patterns corresponding to specific commands. The
feasibility of the eye-writing-based communication system was
studied by Tsai et al. [19]. They used coarse directional changes
in gaze (gaze turn counts) during eye-writing as inputs for ar-
tificial neural networks, instead of using the exact eye-written
traces. Their study showed that a computer system could recog-
nize 14 different eye-writing patterns (ten Arabic numerals and
four arithmetic operators) with an average recognition accuracy
of 72.1%.
In this paper, we developed a new real-time, EOG-based

eye-writing recognition system. The differences between our
system and the conventional EOG-based HCI systems are
as follows: First, in our system, eye-written traces are re-
constructed from the EOG signal in real time based on the
relationship between gaze position and EOG amplitude. The
reconstructed eye-written traces are then utilized as an input
for HCI. Although there have been previous studies on the
estimation of single, momentary movement of the eyes using
EOG, methods to continuously track eye movements and
estimate eye movement patterns in real time have not been
reported. Another uniqueness of our system is that the users'
intended inputs are recognized by applying waveform matching
algorithms to the eye-written traces. Such an approach has been
generally used for hand-writing recognition problems but has
never been applied to eye-writing recognition applications. Our
online experiments showed that the proposed system can yield
reliable recognition rates of eye-writing even with diverse input
patterns (29 patterns: 26 lower case alphabet characters and
three functional input patterns representing Space, Backspace,
and Enter keys). Our eye-writing recognition system can not
only be used for a variety of HCI applications such as a control
system for virtual reality glasses, but also potentially provide
a novel way of communication to patients with locked-in
syndrome (LIS) as the users can communicate with computer
systems by simply eye-writing specific commands.

II. METHODS

The overall experimental procedure is composed of three
stages: preprocessing, gaze reconstruction, and classification
(Fig. 1). In the preprocessing stage, two EOG components
(horizontal and vertical) were acquired from the electrodes
attached around the eyes, and noise and artifacts were removed
from the raw signal. The next stage is gaze reconstruction.
The relationship between EOG amplitude and eyeball rotation
angle was estimated at this stage. This relationship was then
used to calculate rotation angles of the eyeballs based on the
EOG amplitude. Finally, users were instructed to eye-write

Fig. 1. Schematic diagram of the whole experimental procedure. Each block
represents a single procedure, and the whole procedure can be classified into
three distinct stages of preprocessing (light gray), gaze reconstruction (medium
gray), and classification (dark gray).

Fig. 2. Experimental settings: (a) Electrode placements and computation of
two EOG components. (b) Experimental setup.

29 characters, during which classifiers based on waveform
matching algorithms recognized the eye-written patterns.

A. Preprocessing
1) EOG Signal Acquisition: Two EOG components (hori-

zontal and vertical) were obtained from four electrodes attached
around the eyes; these were located at the outer edges of both
eyes as well as above and below the right eye [Fig. 2(a)]. To re-
duce the computational cost of the system, four-channel EOG
signals were down-sampled to a rate of 128 Hz without high-
pass filtering. The horizontal EOG component was derived by
subtracting the left eye signal from the right eye signal. The ver-
tical EOG component was obtained by subtracting the signal at
the lower edge of the eye from the signal at the upper edge of the
eye. and are notations indicating the horizontal
and vertical components of EOG, respectively [Fig. 2(a)].
2) Noise Filtering: An EOG signal contains various noise

components such as thermal noise, conductance fluctuation,
and power noise, as well as signal fluctuations resulting from
electroencephalogram (EEG), electromyography (EMG), and
electrocardiography (ECG). To minimize noise, a median filter
with a fixed window size was applied to the raw EOG signal.
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Fig. 3. Preprocessing of EOG signal. (a) Raw horizontal EOG signal. (b) Raw vertical EOG signal. (c) Preprocessed signal of an exemplar letter “s”. Users were
instructed to focus on a single center point for two seconds prior to eye-writing for eight seconds for purposes of center-point calibration. The calibration region
is marked in light gray, and the eye blink artifact is marked in dark gray.

The window size of the median filter was chosen to be 20 points,
which was equivalent to 160 milliseconds. Since a median
filter removes pulses with a width smaller than about half of
its window size [18], the window size should be large enough
to preserve the microstructures in the signal, which contain
information about rapidly changing eye movements such as
blinking. A visual inspection of the filtered signal confirmed
that the selected window size was effective for removing noise
while preserving the eye movement-related microstructures.
3) Baseline Drift Removal: The shifting resting potentials

(baseline drift) of EOGmake it challenging to estimate eye-rota-
tion angles from EOG amplitudes. Therefore, the baseline drift
should be removed from the original EOG signal. A typical ap-
proach is to model the baseline drift as a polynomial function
[20]. In this study, we modeled the drift with a linear function
(i.e., a polynomial function with degree one) as the resting po-
tential linearly increased or decreased during a short period of
time (while a user wrote one character with eye movements).
Users were instructed to focus on a single center point for two
seconds prior to every eye-writing process. During this calibra-
tion period, the EOG signal was recorded and then fitted to a
linear function. We refer to this process as center-point calibra-
tion. The fitted function was then used for the following eight
seconds for eye-writing data acquisition. The extrapolation of
the fitted function was subtracted from the raw EOG signal to

remove baseline drift from the raw signal. In this way, the signal
could be zero-centered, i.e., the baseline drift could be removed
(see Fig. 3).
4) Eye Blink and Muscular Artifacts Detection and Removal:

Eye blink contaminates EOG signals in such a way that a spike
signal is formed in the vertical component of the EOG [21],
and this could result in unwanted upward and downward strokes
during eye-writing. To remove this artifact, a fast eye blink de-
tection algorithm, which was successfully applied to a real-time
application, called the maximum summation of first derivative
within a window (MSDW) was used [22]. The method sums the
first-order derivatives of the vertical EOG signal within a sliding
window. The summation of first derivatives within a window
(SDW) can be expressed as follows:

SDW EOG EOG (1)

where is the width of the sliding window, and is a specific
time. The detailed procedures including individual spike thresh-
olding, eye blink judgement, and spike range determination can
be found in the recent literature [23].
In addition to eye blinks, movement of facial muscles can

also be an artifact source especially when subjects are frowning
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[24]. This type of artifact could be removed using two unique
characteristics of the artifact: 1) a plateau-like waveform in both
horizontal and vertical EOG signals, i.e., the amplitudes of hor-
izontal and vertical EOGs increase at the same time, sustain flat
while frowning, and then decrease again to the previous ampli-
tudes as subjects stop frowning; and 2) maximum amplitudes
exceed the normal range of EOG signal ( 800 V). Afterwards,
the data samples within the artifact contaminated regions were
removed from the signal and ignored in further procedures.

B. Gaze Reconstruction

1) Determination of Transfer Function Between EOG Am-
plitude and Eye-Rotation Angle: The horizontal and vertical
eye-rotation angles can be deduced from the amplitude of their
respective EOG components once the relationship (transfer
function) between the EOG amplitude and eye-rotation angle
is determined. EOG signal amplitude and eye-rotation angle
are known to have a linear relationship within the boundary
of 30 degrees of eye-rotation angle [24], [25], in which the
relationship can be explained as a linear function in a 3-D plane.
However, the parameters of the function should be determined
through a calibration process, as it varies from person to person
and with different electrode attachment positions. To deter-
mine the parameters, we utilized the multiple-point calibration
(MPC) method proposed by Yagi et al. [27] and Lee et al. [28]:
Yagi et al. introduced a method to calibrate 1-D movements of
the eyes (either horizontal or vertical), and Lee et al. introduced
a method to eliminate the influence of facial angle and position.
The target angle was set, and the visual stimulus (dot) was
shown on the screen at the target angle position. Participants
were instructed to focus on the dot without moving their heads.
The preprocessed EOG output was recorded at the same time as
the target angle of the stimulus. The same process was repeated

(the number of calibration dots) times with different
calibration dot locations.
In our experiment, the target angles of each calibration point

were defined as and (where is the horizontal rotational
angle, and is the vertical rotational angle of the eyes), and a 3
3 uniformly distributed matrix of dots with an inter-dot-angle

of 14 degrees (i.e., ) was used. The recording time
for each calibration point was set to three seconds.
The relationship between EOG amplitude and eye-rotation

angle was determined individually using the prerecorded EOG
amplitudes at certain target angles. Differences in scaling, ro-
tation, and origin between the EOG signal and the actual gaze
location can exist [28], where the possible causes of the rota-
tional difference are unwanted crosstalk between the horizontal
and vertical components of EOG and slightly tilted electrode
placements due to inter-subject variability in skull structure. As
linear transformations can compensate for scaling, rotation, and
origin differences, the relationship can be expressed as linear
equations

(2)
(3)

where , , , , , and are all constants.
In (2) and (3), and would be zero if there is no cor-

relation between horizontal/vertical EOG amplitudes and the

Fig. 4. Predefined eye-writing symbols used in this work. The stroke order was
designed to enhance the classification accuracy. Excepting these 12 symbols, the
users were instructed to write the symbols naturally with their eye movement
as if they were writing original handwritten characters. The dotted lines in the
figures are also parts of the actual eye movements, while the bold lines represent
the original character shapes. All traces start from the point marked with a small
dot.

perpendicular counterpart eye-rotation angle. These can reduce
the effect of horizontal or vertical eye movement on the per-
pendicular counterpart EOG component. In addition, and
would be zero if both the EOG signal amplitude and the eye-ro-
tation angle are zero-centered. Thus, these constants are needed
to compensate for the origin difference.
All constants can be determined through the linear fitting of

the data points. In other words, by plotting every calibration
point ( , , EOG , or EOG ) on a single 3-D space and fitting
the points to a linear surface, we can determine the equations of
the planes for EOG and EOG , respectively. More concisely,
the equation can be expressed as

where

and

then (4)

where the matrix is defined as a transfer function. In this
work, , because the EOG signal is zero-centered after
the baseline drift removal process (i.e., the signal is calibrated
to be when ). The equation then becomes

(5)

Through the MPC method described previously, the transfer
function ( ) can be determined. Please note that this calibration
is required only one time for each experiment, as the relationship
does not change over the elapsed time [27].
2) Gaze Reconstruction and Eye-Writing Symbols: The

users' gaze positions can be reconstructed from the EOG am-
plitudes using the inverse of the transfer function determined
from the previous step

(6)

Users can write symbols with their eye movements while
their gaze position is tracked according to (6). The resultant
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Fig. 5. Normalization of eye-written trace. (a) Changes in horizontal and vertical gaze angles when a user eye-wrote the letter “s”. The dotted black lines in the
two gaze position graphs indicate truncated ranges. (b) Detected movement during the eye-writing period. (c) Truncated and normalized eye-written traces. The
lower left box contains the reconstructed eye-written symbol from the normalized trace. Its colors indicate the stroke order (from red to blue).

time-series data of the gaze traces are then collected, which we
will refer to as the “eye-written trace.”
The symbols used for eye-writing included 26 lower case let-

ters and three functional symbols: Space, Backspace, and Enter
keys. Users were instructed to write lower case alphabets as if
they were writing original handwriting characters, except for 12
symbols. The shapes and writing orders of the 12 symbols were
defined slightly differently because some characters had a dot
that cannot be expressed with eye-writing, some pairs of char-
acters had stroke patterns too similar to discriminate, and three
functional symbols needed to be defined. The predefined traces
of these symbols are shown in Fig. 4. The starting point of every
symbol trace was set to the center, and the participants were in-
structed to pause their gaze at the last point of the symbol trace
before the end of the designated writing time (eight seconds per
character).

C. Classification
1) Eye-Written Character Normalization: An eye-written

trace includes the center-gazing part prior to the character
writing period, and it also contains the end-point-gazing part
after the character writing period. These nonmoving parts are
irrelevant to the writing actions and thus must be removed from
the analytical data for better classification. For eye movement
detection, the gradient of the eye movement is calculated using
the first-order derivative of the Gaussian function with fixed
deviation ( ). Let be the gradient of the horizontal eye
movement at a specific time , and be the gradient of the
vertical eye movement at a specific time . These were defined
as

(7)

and

(8)

where (9)

The nonmoving parts were detected using and . If the
absolute value of the gradient for either the horizontal or the

vertical eye movement component was higher than a specific
threshold ( ) at a specific time, saccadic eye movements were
considered to be included in the component. In this study, we
used fixed values for the slope threshold ( ) and the Gaussian
function deviation ( ) over all participants, and they were
empirically set to 0.05 and 8, respectively. A preliminary visual
inspection of the processed signal confirmed that the selected
threshold and deviation values were effective for detecting
saccadic eye movements while rejecting signal fluctuations
originating from noises. Since the nonmoving portions of the
trace do not include any saccadic movements, the data before
the first and after the last saccadic movements were truncated
[Fig. 5(a) and (b)]. Then, the truncated data contained only
character writing parts. The truncated time-series were then re-
sampled and interpolated to have the same number of samples.
The eye-written traces of a given symbol can have variations

in shapes, sizes, and positions even for a single person. The nor-
malization of characters was conducted to overcome such vari-
ations in order to achieve better classification performance. All
eye-written traces were centered at (0, 0) and resized to fit 1 1
squares while maintaining their aspect ratios [see Fig. 5(c)]. An
example of reconstructed eye-written traces of all 29 symbols
can be found in the Supplementary Document File.
2) Classifiers: To identify symbols from the normalized

eye-written traces, a waveform matching technique was imple-
mented. The input character waveform was matched against
the template waveforms of every character in the symbol set,
and the dissimilarity between the two waveforms was used for
classification. A set of characters of a user was recorded, and
his/her eye traces were preloaded as templates. By comparing
the dissimilarities between the input waveform and the tem-
plates of all characters, the system determined the most similar
character as the output result (see Fig. 6).
We used three different similarity (or dissimilarity) measures:

Pearson's correlation, root-mean-square error (RMSE), and
dynamic time warping (DTW). For the Pearson's correlation
classifier, horizontal component and vertical component of the
normalized eye-written traces were separated and Pearson's
distances between the template and the input waveforms
(1-Pearson's correlation coefficient) were calculated for both
components [29]. Then, the dissimilarity ( ) of Pearson's cor-
relation classifier was defined as the sum of Pearson's distances
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Fig. 6. Schematic of eye-written character classification. When an input gaze
trace is given, it is compared to all of the templates, and the dissimilarities are
calculated to determine the most probable symbol. The black bar in the graph
indicates the symbol with the minimum dissimilarity.

of horizontal and vertical components. Thus, the dissimilarity
( ) lies between [0, 4].
The second classifier uses the RMSE as the dissimilarity mea-

sure. Horizontal component and vertical component of the nor-
malized eye-written traces were separated and RMSE between
two horizontal components (the template and the input traces)
and RMSE between two vertical components (the template and
the input traces) were calculated [30]. The dissimilarity ( ) of
RMSE classifier was defined as the sum of these horizontal and
vertical RMSEs.
The third type of classifier uses DTW for two-dimensional

time series to align the data points of two different time-series
datasets and evaluate the dissimilarity between them [31]. The
eye-written traces of the same symbol can differ in writing seed
and gaze turn times. To derive a proper dissimilarity measure
between two eye-written traces, DTW matches the traces point
by point by warping the signals on the time axis. Then, the abso-
lute difference between two traces that have been aligned with
respect to time is calculated and used as a dissimilarity measure
( ) as follows:

(10)

where indicates the number of data points in aligned wave-
forms, and and are the time-aligned waveforms of
the template trace and the input trace, respectively. In this work,
we used a global path constraint when calculating DTW as it
limits the scope of the warping path and thus reduces the com-
putational efforts required for path searching. The detailed ex-
planation on the computational complexity can be found in the
discussion session.
As explained earlier, an input trace is compared to the tem-

plate traces of all possible symbols, and the dissimilarities are
calculated using one of the three dissimilarity measures. The
symbol with the minimum dissimilarity (the most similar one)
is chosen to be the most probable input symbol, and it becomes
the system's output for character recognition.

III. EXPERIMENT

A. Apparatus
EOG signals were acquired using a commercial multichannel

bio-potential measurement system (ActiveTwo, BioSemi, Inc.,
Amsterdam, Netherlands). A laptop computer (4G-RAM, Intel
Core i5-6300HQ 2.30 GHz CPU) was used for all experiments
and computation time analyses. Real-time data recording and
signal processing programs were implemented in MATLAB
(Release 2013a, MathWorks, Inc., Natick, MA, USA). The
MATLAB Psychophysics Toolbox [32] and its extensions were
used to accurately represent controlled visual stimuli on the
monitor in time, as MPC requires synchronization between
stimulus timing and signal recording.
Flat active Ag/AgCl electrodes were attached to the skin sur-

face with disposable adhesive patches. Conductive gel was also
used to reduce the contact impedance between the skin surface
and the electrodes. The experiments were performed 15 minutes
after electrode placement in order to allow the impedance be-
tween the skin surface and the electrodes to stabilize. Two hor-
izontal component electrodes and two vertical component elec-
trodes were used for the EOG recordings [see Fig. 2(a)], and the
left and right mastoid electrodes were used as a reference and a
ground, respectively.

B. Subjects
Twenty healthy participants (14 males and six females, aged

22 2.80 years) who signed consent agreements were enrolled
in our study. All participants were fully informed of all experi-
mental procedures. None of the participants had any known neu-
rological or ophthalmic diseases such as cataracts, glaucoma,
color blindness, squint, diplopia, or visual agnosia, which could
affect the visual field. Eleven of them had minor refractive er-
rors such as myopia and hyperopia. Those who had such vision
problems wore glasses or contact lenses during the experiment
in order to correct refractive errors.

C. Session Design
The overall experiment was composed of three sessions: a

parameter calibration session, a practice session, and a data ac-
quisition session. All parameters related to preprocessing were
determined during the parameter calibration session. An EOG
signal was recorded for the first 15 seconds while participants
were instructed to blink their eyes naturally. The parameters for
eye blink detection (i.e., blink spike threshold) were determined
using the spikes evoked by the eye blinks during this time. In
addition, the MPC to determine the transfer function was also
performed during this session. Participants sat in front of a com-
puter monitor at a fixed distance of 50 centimeters. The position
of the monitor screen was adjusted such that its center point was
at the eye level of each participant. Participants were told to
focus on the white dot presented on the screen and not to turn
their heads. A white dot was presented on the screen in each of
nine different predefined gaze positions in a randomized order.
During this, an EOG signal was recorded and used to evaluate
the transfer function in (5). The inverse matrix of the transfer
function was then used to reconstruct the gaze positions based
on the EOG amplitudes for the subsequent sessions.
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Fig. 7. Overall experimental design for data acquisition. (a) A symbol set is
composed of four blocks, and 20 seconds of rest was given to participants after
each block. (b) An instance of symbol writing is composed of center-point cal-
ibration, eye-writing, and rest, which is followed by the next symbol writing.

For the practice session, participants were asked to face a
white empty panel for eye-writing training (see Fig. 2(b) for
panel placement details). The panel had a center point indicator
(a pin) for center-point calibration. Participants were instructed
to eye-write symbols on the panel in such a way that the imag-
inary symbol trace would fill the panel. Also, auditory instruc-
tions and beeping sounds were used to cue the participants when
to start eye-writing and when to finish, since there was no mon-
itor screen visible during the eye-writing. Before the data were
recorded, participants wrote a set of all of the symbols as a prac-
tice to accustom them to eye-writing.
During the data acquisition session, every participant eye-

wrote five symbol sets. Each symbol set was divided into four
blocks to allow sufficient resting time [Fig. 7(a)]. Each symbol
writing session was composed of two seconds of center-point
calibration, eight seconds of eye-writing, and five seconds of
rest [Fig. 7(b)]. Twenty seconds of rest was provided between
each pair of blocks in order to reduce the effects of accumulated
fatigue on the eye-writing task. For the same reason, two min-
utes of rest were provided between the sets.

D. Classification Performance Evaluation
The eye-writing recognition system was evaluated using a

leave-one-out cross validation scheme. One of five recorded
eye-written symbol sets of a participant was set aside as a tem-
plate set. The remaining four symbol sets were then classified
using the template set and waveform matching methods de-
scribed in the previous section. This process was repeated five
times so that each of the datasets could be used as the template
set. Thus, it generated ( ) combinations of template and
test sets. The system performance was then averaged over all 20
cases for each participant and was expressed in terms of preci-
sion, recall, and F1 score. For each symbol, the precision, recall,
and F1 score were calculated as

Precision (11)

Recall (12)

TABLE I
AVERAGE CLASSIFICATION PERFORMANCE OF DIFFERENT WAVEFORM

MATCHING METHODS

and score
Precision Recall
Precision Recall

(13)

where , , and are the number of true positives,
false positives, and false negatives, respectively.
Then, the precision, recall, and F1 score were averaged over

all symbols to evaluate a person's average eye-writing perfor-
mance. The performances of all participants were also averaged
to evaluate the overall performance of the system.

IV. RESULTS

A. Average Performance
Table I shows the average classification performance of all

participants using three different waveform matching methods
in terms of precision, recall, and F1 score. The DTW-based
classifier demonstrated the best classification performance
among the three classifiers. Its averaged precision over all par-
ticipants was 87.77% and the averaged recall was 86.99%. The
average F1 score of the DTW-based classifier was 87.38% (see
Table I). Since the DTW outperformed the other two methods,
we utilized DTW for our further analyses. The performance of
the DTW-based classifier for all participants is summarized in
Table II. The participants with the best and worst classification
results are marked in bold. The minimum accuracies (precision,
recall, and F1 score) were recorded by the same participant and
were much worse than those of the second worst performance
( score 79.09 ).

B. Summed Confusion Matrix
To identify frequently occurring errors of the recognition

system, a summed confusion matrix was utilized for all partici-
pants (see Fig. 8). Each cell in the matrix represents the rate of
misclassification of a given symbol (row) as another (column).
The error rate of a predicted symbol with a given true symbol
is defined as

Error rate symbol true symbol
predict true

true
(14)

where true indicates the number of eye-written traces
whose true symbol is , and predict true indicates
the number of eye-written traces whose true symbol is but
predicted as a symbol . For instance, the matrix indicates that
the error rate of classifying an input of “a” as “q” is between 1%
and 4%. The actual value was 3.5%, and this means any input of
“a” has a 3.5% possibility of being classified as “q”. Note that
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TABLE II
DTW WAVEFORM MATCHING CLASSIFICATION RESULTS FOR

EACH PARTICIPANT

Fig. 8. Summed confusion matrix over all participants. Diagonal components
were omitted. The error rate indicates the possibility of classifying an input of
a given symbol (row) as another symbol (column). Upper case S, B, and E rep-
resent space, backspace, and enter, respectively. Please note that a darker color
indicates a higher error rate, and the color bar is given in a log scale.

the sum of the values in one row represents the total error rate
( recall) of a given symbol (row) and that the color bar in
the figure is in logarithmic scale. The most frequent error was
classifying the input of “k” as “h,” with an error rate of 16.75%;

this was followed by an error of classifying “w” as “v” with an
error rate of 13.25%.
1) DTW Classification Results for Each Symbol: The accu-

racies for each symbol are presented in Table III. The upper case
S, B, and E represent space, backspace, and enter, respectively.
The symbols showing the maximum and the minimum accura-
cies are marked in bold. Most of the symbols had both recall
and precision in the range of 85% to 100%. The average preci-
sion over all symbols was 87.25%, and the average recall was
86.99%. A minimum precision of 68.39% was reported for the
letter “h,” and a minimum recall of 73.25% was reported for
the letter “u.” In contrast, a maximum precision of 97.92% was
recorded for the letter “o,” and a maximum recall of 96.75%
was recorded for the symbol “backspace.” A demonstration of
the online eye-writing can be found on YouTube. 1

V. DISCUSSION

A. DTW Classification Results Over Different Participants

The results of eye-writing recognition using DTW indicate
that the performance of the proposed system was robust across
participants. Different participants demonstrated variability in
writing style, eye moving speed, eye blinking frequency, stroke
order for symbols, aspect ratios of characters, and EOG signal
amplitudes. For instance, some participants eye-wrote symbols
quickly using relatively large leaps (focus jumps) rather than
gradual transitions when drawing lines. Others eye-wrote sym-
bols slowly with smaller focus jumps (gradual transitions in
focus when drawing lines). Examples of this difference in eye-
writing speed among participants are illustrated in Fig. 9. De-
spite such large inter-individual variability, the developed eye-
writing recognition system achieved a high average F1 score
of 87.38% and a maximum F1 score of 97.81%. Half of the
participants achieved F1 scores higher than 90%, which ranged
from 90.14% to 97.81%. In addition, all participants except one
achieved greater than 75% precision and recall.
One participant (subject 16 in Table II), however, exhibited

poor performance with an F1 score lower than 70%. The main
reason for the low accuracy was inconsistency in eye-written
traces. Since our system assumes that a person has consis-
tency in stroke orders and shapes for a given symbol when
eye-writing, all participants were instructed to maintain these
consistently while writing the five sets of symbols. This par-
ticipant maintained such consistency for most of the symbols;
however, several symbols were written in different ways (with
regard to writing order and shape), which resulted in system
confusion. For instance, this participant wrote the letter “p”
from top to bottom three times and then wrote the same letter in
the reverse order twice. This problem might be caused by lack
of concentration on the task over the long experiment duration
and/or the lack of sufficient practice. We expect that these
types of errors would be reduced if users are given sufficient
practice and rest. In this way, users would be able to become
accustomed to eye-writing and adapt their eye movements to
the system.

1https://www.youtube.com/watch?v=_aKkYsvqe8k
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TABLE III
DTW WAVEFORM MATCHING CLASSIFICATION RESULTS FOR EACH SYMBOL

Fig. 9. Two exemplar traces from different participants, which show large inter-individual variability in eye-writing. (a) An exemplar eye-written trace of the
letter “o” that was written with gradual transitions of focus. (b) An exemplar eye-written trace of the letter “o” that was written with relatively large focus jumps.
Please note that these two traces have different focus jump sizes and aspect ratios (the ratio of width to height).

B. Recognition Rate of Each Symbol

The recognition rate of each symbol (Table III) was well-bal-
anced, demonstrating the high reliability of the system. The av-
erage performance of 87.25% precision and 86.99% recall was
not driven by any particular symbols with extremely high recog-
nition rates. No single symbol had precision and recall values
lower than 65%, and the recognition rates ofmost of the symbols
ranged from 75% to 95%. This balanced distribution of recogni-
tion rates is particularly significant when evaluating multiclass
classifiers.

C. Confusion Analysis

From the summed confusion matrix in Fig. 8, we identified
some highly probable errors. These errors (errors with high error
rates) affected the precision and recall of the error-involved
symbols significantly (Table III). For instance, themost frequent
error was classifying “k” as “h,” with an error rate of 16.75%.
As a result, the precision of the symbol “h” was lowered, and it
exhibited the minimum precision among all of the symbols. In
addition, this error lowered the recall of the symbol “k” to 76%.
Other examples include classifying “w” as “v,” “h” as “k,” “v”
as “w,” “m” as “n,” “u” as “n,” “n” as “h,” and “a” as “u.” As
one might expect, the morphological similarities between these
symbol pairs are the possible cause of confusion.

Although DTW showed the best performance in classifica-
tion accuracy, it could also be a source of another error. Since
DTW skips several points of a waveform, some visually dif-
ferent character pairs such as “k” and “h,” “v” and “w,” or “m”
and “n” might have high similarity. The use of additional fea-
tures could be a possible solution to reduce this type of error.
Another type of error was caused by the shapes of charac-

ters. Seemingly distinguishable characters such as “u” and “n”
or “a” and “u” can look similar when written in eye-writing
form. For instance, the symbol “a” was most misrecognized
as “u,” with an error rate of 6.5%, and “u” was misrecognized
as “a” at an error rate 4.75% (see Fig. 8). The relatively high
error rates in differentiating “a” and “u” come from the mor-
phological similarity of the two eye-written traces. These sym-
bols might not seem similar to each other in typed form or
in hand-written form; however, in the eye-writing system, the
user starts every eye-written trace from the center point, and
eye-writing cannot represent discontinuity (pen-up and -down
in handwriting) in symbol traces. These factors allow seem-
ingly distinguishable symbols to share a significant portion of
their traces in eye-written form (Fig. 10). Consequently, wave-
form matching might fail to clearly distinguish between the
eye-written traces of such symbols. Although we expected this
type of error and prepared a solution by predefining the traces
of certain symbols (see Fig. 4), variability in writing order and
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Fig. 10. Example of two letters (“n” and “u”) that have similar shapes in eye-written form. (a) An exemplar “n” character trace. (b) An exemplar “u” character
trace. The center box in each figure contains the reconstructed eye-written symbol. Its colors indicate the stroke order (from red to blue).

shape among participants still generated this type of error. To
avoid this error, the predefined traces would be required for
more symbols.

D. Computational Cost
The proposed system incorporates a number of preprocessing

procedures such as noise filtering, baseline drift removal, eye
blink removal, and EMG removal. For the implementation of a
real-time system, time taken for signal processing should be less
than the signal sample spacing (1/128 seconds). To reduce the
computational cost, we downsampled EOG signals and used an
efficient artifact detection algorithm. We measured time taken
for preprocessing (from data acquisition to eye-written trace re-
construction) in a laptop environment (4 GB RAM, Intel Core
i5-6300HQ 2.3 GHzCPU), and the results showed that themean
preprocessing time for a data point was 0.38 ms with the stan-
dard deviation of 0.12 ms, which is about 1/20 of the signal
sample spacing.
In addition, we reduced the computational cost required for

DTW. The original DTW algorithm had quadratic time and
space complexity [33]. To reduce this computational cost, we
used a global path constraint (especially, Itakura Parallelo-
gram [34]) when calculating a dissimilarity table. The global
path constraint limits the scope of the possible warping path
and thus reduces the computational efforts required for path
searching. The mean classification time, which was calculated
with all participants' data, was only 68.2 ms per one eye-written
trace identification (max: 108.1 ms, min: 65.2 ms). Thus, the
eye-writing classification results could be presented immedi-
ately to the user without any inconvenient delay.

E. Advantages
The proposed EOG-based eye-writing system has three main

advantages. First, although there have been previous studies
on the estimation of single, momentary movement of the eyes
using EOG, methods to continuously track eye movements and
estimate eye movement patterns in real time have not been
reported. The suggested system offers a way to reconstruct a
user's eye-written trace from an EOG signal in real time. This
can be utilized to visualize the user's eye-writing input in real

time. For illustration, our current system can also be utilized
without a character recognition module. In that way, users of
our system can draw things freely with their eye movements and
express their artistic ideas or notions without any restrictions
on possible input patterns. We hope this will offer the users
a creative way to express themselves. Second, the developed
system requires only low computational power compared to
camera-based eye trackers that require ample image processing.
Consequently, the system can be implemented to develop rela-
tively low-cost and low-power embedded systems for various
purposes. For instance, the system can be applied to inexpen-
sive communication applications for patients with ALS. Lastly,
eye-writing offers a versatile and useful way to communicate
with a computer. As studied earlier, the eye-writing method
allows for versatile and useful eye movement-based HCI
[19]. For example, the eye-writing method does not require a
display on which to illustrate a virtual keyboard or command
window. Thus, the system can be more easily implemented
on a mobile platform. Furthermore, although each alphabet
symbol trace represented an actual alphabet letter input in this
work, the system can be modified so that a symbol represents
any designated useful function of an HCI system. For example,
when controlling an assistive robot using eye movements, the
system can be designed so that an eye-writing symbol input
represents any designated function of the robot. In that way,
the eye-writing system will increase the speed and usability of
HCI systems.

F. Limitations and Future Works
This work specifically focused on eye-writing recognition in

a stationary environment. Participants sat on a chair and were
instructed to stay “naturally motionless” while eye-writing.
Also, users were required to face a monitor when eye-writing
characters. Although the current setting is still promising for
use in patients with ALS, the system needs more improve-
ments to be applied to dynamic real-world conditions. First,
the use of a monitor should be avoided to allow the system
to be used in dynamic environments. In our experiment, the
purpose of the monitor was to act as a “grid guide” and to assist
the users in eye-writing. Without the monitor, novice users
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reported trouble with knowing where to look in order to write
what they intended. However, we believe that adapted users
would not require the monitor to use the system. Thus, given
sufficient training and adaptation time, users would be able to
use the system without the guide monitor or panel. Second,
any motion of a human user can generate artifacts on the EOG
signal and affect eye movement detection [14]. Thus, for future
applications to dynamic conditions, compensation for motion
and head movements is required. Human motion detectors and
motion classifiers based on accelerometers could be a possible
solution to this problem [30], [31], [35]. By applying such ex-
isting systems, an EOG signal accompanied by excessive body
motions could be rejected or appropriately adjusted. Lastly, in
this work, all of the electrodes were connected to a commercial
data acquisition platform through cables. However, the cables
might cause user discomfort under dynamic real-world condi-
tions. Headband [25] or goggle [14] type electrode embedded
systems would be helpful for future applications.
In addition, experiments with patients with LIS are necessary

in future studies. Although this study showed that our system
works reliably for normal persons, eye-writing could be tedious
and more challenging for the patient group who generally has
a difficulty in moving their eyes. Thus, technical improvements
would be required based on the feedback from patients.

VI. CONCLUSION
We proposed an EOG-based eye-writing recognition system

for real-time environments. Participants were able to eye-write
letters with volitional eye movements after a brief training pe-
riod. The results of this work led us to two main conclusions.
First, eye-written traces can be reconstructed from EOG signals
in a real-time environment using the proposed gaze reconstruc-
tion method. Second, our experiments showed that EOG-based
eye-writing has the potential to be used as an input source for
HCI with diverse input patterns and reliable recognition rates.
Our eye-writing recognition system is expected to be used for
general HCI purposes, and it can offer a creativemethod of com-
munication for patients with ALS.
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