
1224 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 2, MARCH 2004
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Abstract—In this paper, a novel algorithm for multimodal func-
tion optimization is proposed, based on the concept of evolution
strategy. A new concept, named restricted evolution, shows more
improved characteristics than conventional approaches that have
been used for multimodal function optimization. The efficiency and
usefulness of the proposed method will be verified by the applica-
tion to various cases including practical optimization problems.

Index Terms—Evolution strategy (ES), multimodal function op-
timization, restricted evolution.

I. INTRODUCTION

RECENTLY, algorithms to find more than one optimum
of a function, usually referred to as a multimodal func-

tion optimization, have been widely studied. Most of the studies
were based on the genetic algorithm (GA). Various concepts
have been introduced to realize multimodal function optimiza-
tion in GA, such as sharing [1], [2], deterministic crowding
(DC) [3], niching method [4], restricted competition selection
(RCS) [5], [6], and so on [7]–[9]. Basically, however, algorithms
based on the GA tend to converge slowly, compared to other
heuristic algorithms such as simulated annealing (SA) and evo-
lution strategy (ES).

Nowadays, there have been some attempts at applying the ES
to multimodal function optimization [10]–[12]. Most of the ap-
proaches adopted some concepts of GA, such as crossover and
sharing. The common feature of the approaches was to cluster
neighboring solutions around a peak. However, excessive ap-
plication of the GA concept may lose the powerful advantage of
the ES, the deterministic algorithm-like characteristic that yields
faster convergence than the GA does.

In this paper, a novel algorithm for multimodal function
optimization is developed, based on the concept of the ES. A
new concept, named restricted evolution, is proposed to realize
the multimodal function optimization scheme. The concept
prevents solutions from clustering with their neighbors and
allows only one solution to survive for each peak. Hence,
the proposed concept is more efficient and practical than the
conventional ones because a smaller population is required.
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Moreover, it has additional advantages that it is easy to im-
plement and shows fast convergence because it keeps most
of the basic features of the ES. The efficiency and usefulness
of the proposed method will be verified by the application to
some mathematical functions and a practical electromagnetic
optimization problem.

II. PROPOSED ALGORITHM

As stated briefly in the Introduction, the main feature of the
proposed algorithm is the separation of neighboring solutions,
which is very different from the conventional ES applications
presented in [10]–[12]. In the case of the GA, the concept of the
RCS is somewhat similar to that of the proposed method [5], [6].
However, in the case of the RCS-GA, the niche radius should
be determined before the optimization process, which is very
hard to do because the shape of an objective function cannot
be estimated a priori. Whereas, for the proposed method, the
evolution range can be modified during the optimization process
by checking the convergence rate. The “self-adaptation” is the
unique feature of the ES. In this study, the evolution range is
used instead of the niche radius. The proposed method adopts
the concept of an elite set, which stores superior solutions with
some distance between each other. The members of the elite set
are replaced with much superior or improved solutions during
the evolution. The total process of the proposed algorithm is as
follows:

1) Step 0—Initialization: Initialize and
for each design variable.

Evolution range for th design variable. If the th de-
sign variable is , the child generation is generated
within , where .
This factor is modified during the evolution and every
elite set has different ranges except at the starting time.
Minimum distance between two elite solutions. This
represents minimum distance between two closest ex-
trema.
Maximum distance between two elite solutions.
Initial value for .

2) Step 1—Generation of Initial Elite Set: Create the initial
population and elite set. The size of the initial population is .
Among them, solutions are selected as members of an elite set.
The elite set is determined by following rules:

a) put a currently best solution into the elite set and remove
other solutions inside the evolution range of the best
solution;
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Fig. 1. Schematic illustrations to explain the performance of multimodal
function optimization algorithm. (a) Initial solutions and evolution ranges. (b)
Optimized result from proposed multimodal approach.

b) find another best one except the removed solutions, and
repeat the previous step until members are found.

3) Step 2—Generating Children, Restricted Evolu-
tion: Create new children within mutation range of
each elite solution. This process is the same as ES. The
restricted evolution ultimately finds a local optimum solution
for each elite member, like deterministic search algorithms.

4) Step 3—Mutation: If the objective function for a child
generation is improved compared to its parent, replace the
parent (a member of elite set) with the child. After finishing the
mutation, check if each elite solution is located in the mutation
range of other elite solutions. If it is “true” and its objective
function has a worse value than other solution, eliminate it
(remove it from elite set). The number of removed solutions is
denoted by .

5) Step 4—Shaking: The solutions are randomly gen-
erated in the whole search space outside the mutation ranges of
existing elite solutions ( is the number of shaking solutions).
During the generation process, they should not invade other so-
lutions’ evolution range .

6) Step 5—Annealing: Form a new elite set. The removed
solutions are replaced by the new solutions generated by the
shaking process (the best solutions are selected among the

solutions). Existent elite solutions that are worse than re-
maining solutions are also replaced with new solutions. If an
elite solution is improved within the evolution range, the evolu-
tion range is increased by dividing it by 0.85. If the elite solution
is not improved, the mutation range is decreased by multiplying
it by 0.85. The initial evolution range is given to the newly
generated solutions.

7) Step 6—Convergence Check: Repeat steps 2–6, until
most solutions are not improved any more.

Fig. 1 shows the schematic illustrations to briefly explain
the performance of the proposed multimodal optimization al-
gorithm. Fig. 1(a) shows initial solutions and evolution ranges.

When a general evolution strategy is used, solutions 2 and 3 are
eliminated and finally all the solutions are gathered around the
global peak B. On the contrary, when the proposed algorithm is
used, each solution searches its neighboring local peaks. Hence,
solutions 1 and 3 converge to local peaks B and C, respectively.
During the evolution, solution 2 approaches to the same peak
(B) along with the solution 1 and is eliminated from the elite
set. When the removed solution 2 is newly generated, it has
more chance to be located around the empty peak A, as shown
in Fig. 1(b).1

III. NUMERICAL TESTS AND RESULTS

The proposed algorithm was applied to some multimodal
mathematical functions and a practical electromagnetic opti-
mization problem.

A. Tests for Mathematical Functions

Two mathematical functions were tested: a test multimodal
function and sinc function. The formula of the test multimodal
function is

(1)

where . The formula of the two-dimensional (2-D)
sinc function is

(2)

where . Fig. 2(a) and (b) show the shapes of the
test functions.

Table I shows the basic conditions to execute the proposed al-
gorithm. Figs. 3 and 4 show the intermediate solutions for a test
multimodal function and Sinc function, respectively. From the
figures, we can see that the results show very fast convergence
speed and the proposed method is very efficient for finding mul-
tiple peaks.

To verify the performance of the proposed algorithm more ro-
bustly, the number of variables for the test multimodal function
was increased. The formula of the test multimodal function for

variables is

(3)

where . The exact peak positions are already
known as . were tested repeatedly
100 times. The number of members in the elite set was 500 for

and 1000 for . The number of children per each
elite member was 10 for and 20 for . After 20 iter-
ations, the number of found peaks was investigated. In the case
of , 491.24 peaks were found among 500 elite members.
For the case of , 975.71 peaks were found among 1000
elite members (491.24 and 975.71 are averaged values for 100
repeated simulations).

1The evolution ranges of solutions 1 and 3 generally increase before conver-
gence, as shown in Fig. 1(b). Note that a new solution is generated outside the
evolution ranges of existing elite members.
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Fig. 2. Mathematical multimodal functions. (a) Test multimodal function. (b)
sinc function.

TABLE I
CONDITIONS TO EXECUTE THE PROPOSED ALGORITHM

Although the proposed algorithm could find most of the peaks
well, as shown in the previous simulations, the algorithm still
has a problem. The problem stems from the unique feature of
the ES—self-adaptation. When some elite members converged
to their local optima, their evolution ranges decrease to .
When the value is a quite small value and most peaks
were already found, newly generated solutions may not find new
peaks. In other words, even when the number of peaks and the
number of elite members are equal, every peak may not found.
That is why some clustered solutions appear in Figs. 3 and 4.
However, in practice, every peak does not need to be found and
most peaks are already found before the freezing point. To con-
firm this property, additional simulations were performed. For
the test multimodal function (1), two cases ( ,
and ) were tested and the results are demon-
strated in Fig. 5. When the number of elite members was the
same as that of the peaks, some solutions could not find empty
peaks. However, when the number of elite members was smaller

Fig. 3. Optimization result for a test function (� = 80; � = 5; � = 10).

Fig. 4. Optimization result for a test function (� = 80; � = 5; � = 10).

Fig. 5. Comparison of performances when the number of elite members are
different. (a)� = 121, iteration 10, 99 peaks were found. (b)� = 121, iteration
20, 103 peaks were found. (c) � = 50, iteration 10, 50 peaks were found. (d) �
= 50, iteration 20, 50 peaks were found.

than that of peaks, every member found multiple peaks and con-
verged very rapidly. The simulation results show that the pro-
posed algorithms demonstrate much faster and more robust con-
vergence characteristics when the number of elite members is
smaller than that of the peaks, whereas conventional multimodal
algorithms generally use a larger population than the number of
peaks needed to be found, which is somewhat impractical.
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Fig. 6. Test deflection yoke model and design variables. This figure shows the
original state, i.e., all values of the design variables are zero. Then, the design
variables 1–4 implies the variance of the heights of each coil (Arrow implies the
directions of the variance).

TABLE II
RANGES OF DESIGN VARIABLES

TABLE III
CONDITIONS TO EXECUTE THE PROPOSED ALGORITHM

B. Application to a Practical Optimization Problem

As a practical optimization example, a deflection yoke (DY)
for color display tubes was selected. The objective functions
to be evaluated were the beam shadow neck (BSN), trilemma,
and sensitivity of horizontal coils, which are defined well in
[13]. The optimum values of the BSN and trilemma are 5 and

mm, respectively, and the sensitivity should be minimized.
Among the objective functions, the BSN and trilemma can be
easily evaluated using simple numerical simulations during
the optimization process. However, because the sensitivity
cannot be calculated automatically, it cannot be included in
the optimization process [13]. Fortunately, there are some
bounds on the specification of the BSN and trilemma (BSN:
4–6 mm, trilemma: – mm). In this study, after finding
multiple solutions that satisfy the design margins of the BSN
and trilemma, sensitivities for each possible solution were
compared. Fig. 6 presents initial state of the DY and definitions
of four design variables that affect the objective function most
dominantly. If the variables change, automatic winding modeler
generates a new winding structure and the value of the BSN
and trilemma are updated. Tables II and III show the ranges of
four design variables and conditions to execute the proposed
optimization algorithm, respectively. The objective function to
be maximized was defined as

(4)

TABLE IV
OPTIMIZATION RESULTS

Table IV shows the results of the optimization. Among ten
elite solutions five candidate ones that satisfy the design margins
were selected. After that, the sensitivity was evaluated for each
candidate solution. From the table, we can see that solution 3
minimizes the sensitivity while satisfying the design margins.
Hence, we selected the solution 3 as the optimal one.

IV. CONCLUSION

In this paper, a novel algorithm for multimodal function op-
timization was proposed. The algorithm is based upon the com-
bination of the evolution strategy and the restricted evolution.
The proposed method was verified by applying to various cases
and showed very good performances.
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