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ABSTRACT

Introduction: Neuroscientists are becoming interested in the application of computational EEG analysis
to the identification of ictal onset zones; however, most studies have focused on the localization of ictal
onset zones in focal epilepsy. The present study aimed to estimate the ictal onset zone of Lennox-Gastaut
syndrome (LGS) with bilaterally synchronous epileptiform discharges from intracranial electroenceph-
alography (iEEG) recordings using directional connectivity analysis.

Methods: We analyzed ictal iEEG data acquired from three LGS patients who underwent epileptic
surgery with favorable surgical outcomes. To identify the ictal onset zones, we estimated the functional
directional connectivity network among the intracerebral electrodes using the directed transfer function
(DTF) method.

Results: The analysis results demonstrated that areas with high average outflow values corresponded
well with the surgical resection areas identified using electrophysiologic data and conventional
neuroimaging modalities.

Discussions: Our results suggest that the DTF analysis can be a useful auxiliary tool for determining
surgical resection areas prior to epilepsy surgery in LGS patients. This is the first research article
demonstrating that directional connectivity analysis of iEEG recording data can be used for delineating

surgical resection areas in generalized epilepsy patients who need surgical treatment.
© 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Precise identification of ictal onset zones in patients with
intractable drug-resistant epilepsy is of great importance for
successful epilepsy surgery. To estimate ictal onset zones, various
neurophysiologic and neuroimaging modalities have been utilized
such as video-monitored scalp electroencephalography (EEG),
magnetoencephalography (MEG), ictal/interictal single photon
emission computed tomography (SPECT), positron emission
tomography (PET), and functional magnetic resonance imaging
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(FMRI) triggered by simultaneously recorded EEG.!* However,
despite the recent rapid developments in brain imaging technolo-
gy, the noninvasive imaging modalities listed above have not been
directly used to localize the surgical resection areas, but have been
used as supplementary tools to determine the locations of
intracranial EEG (iEEG) electrodes, because of the relatively
limited spatial resolutions of these tools. Indeed, in modern
clinical neurophysiology, information obtained from iEEG record-
ings is regarded as the gold standard for pre-surgical evaluation
prior to epilepsy surgery. Traditionally, ictal onset zones have been
identified visually by well-experienced electroencephalographers.
For example, ictal onset zones are usually found in locations with
sustained rhythmic changes on electrocorticograms (ECoG)
accompanied by subsequent clinically typical seizure activity.
Recently, neuroscientists have become interested in the
application of computational EEG analysis methods to the
identification of ictal onset zones and epileptic networks, due to
the rapid development in digital EEG systems and computational
neuroscience. To identify ictal onset zones, various functional
connectivity measures have been adopted, such as mutual
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information,” stochastic qualifiers,® and directed transfer functions
(DTFs).”® Functional connectivity analysis methods have been
shown to be useful tools in revealing the underlying mechanisms
of epileptic networks. Among various indices to measure
functional connectivity between neural signals, DTF has attracted
the most attention as it can efficiently estimate causal interactions
among multiple EEG signals in the frequency domain.

Since Kaminski and Blinowska'’s first report in the early 1990s,°
DTF has been applied extensively to the analysis of epileptic
networks. Series of studies have demonstrated that the DTF
technique can be used to identify ictal onset zones from iEEG
recordings, specifically in mesial temporal lobe epilepsy,'® lateral
temporal lobe epilepsy,!! and neocortical extra-temporal lobe
epilepsies.'>!3 The DTF-based approach has been combined with
EEG-based or ECoG-based source localization methods,”'* as well
as with single-class support vector machine (SVM) algorithms,?
providing novel modalities for localizing ictal onset zones.

Despite extensive studies on DTF-based ictal onset zone
localization,” %14 however, all of the previous studies have
focused only on the localization of ictal onset zones in focal
epilepsy. However, in some patients with generalized epilepsy
such as Lennox-Gastaut syndrome (LGS), localization of ictal onset
zones is also critical for surgical treatment. LGS is described as an
epileptic syndrome with intractable, multiple seizure types
including tonic, atonic, myoclonic and atypical absence seizures.
Its interictal EEG pattern is characterized by interictal bilaterally
synchronous slow spike-waves and paroxysmal fast activity.'®
Some patients with LGS have focal lesions that attribute to
secondary generalized epileptic encephalopathy; these focal
lesions are generally identified via EEG, MRI, and other functional
neuroimaging techniques. Because of their generalized ictal iEEG
discharges, however, surgical resection areas are usually deter-
mined based on their interictal characteristics on iEEG, with the
help of advanced neuroimaging techniques. Recent studies
reported successful outcomes of resective epilepsy surgery for
children with LGS, despite abundant generalized and multiregional
EEG abnormalities.'®!” However, additional refinement techni-
ques to confirm the locations of ictal onset zones are still required.
In the present study, we localized ictal onset zones in three LGS
patients by applying the DTF method to ictal iEEG recordings
obtained before epilepsy surgery and investigated the feasibility of
using the DTF method for pre-surgical evaluation of LGS.

2. Subjects and methods
2.1. Subjects

Of 27 patients who had LGS and underwent resective pediatric
epilepsy surgery at Severance Children’s Hospital during 2001-
2007, we identified 16 patients who became seizure free after focal
resective surgery. Then we excluded patients who had cerebral
infarctions or progressive underlying metabolic diseases or
chromosomal anomalies. Finally three patients were selected
and all clinical data, including iEEG recordings, were obtained from
them. This study was conducted under the permission from the
institutional review boards of Severance Hospital. Parents or
guardians of all subjects were asked to provide a written consent
before their child’s data were enrolled in the study.

The first subject (LYS) was a 3-year-old boy with severe mental
impairment (Intelligence Quotient (IQ) of 25) who had suffered
from refractory epilepsy since 7 months of age. Two types of
seizures were observed in this subject, generalized tonic spasms
and head drops, and none of the available antiepileptic medica-
tions could suppress his seizures. In this patient’s pre-surgical
evaluation at the age of 3 years, the MRI findings were normal.
FDG-PET scans did not reveal any asymmetric hypometabolism,

but SISCOM, which was obtained using a slow ictal SPECT injection
protocol, lateralized consistently to the right frontotemporal area
with an epileptogenic focus. Continuous video EEG monitoring
showed frequent generalized slow spikes and waves and general-
ized paroxysmal fast activities, as well as localized epileptiform
discharges or bisynchronous sharp waves predominantly located
in the right frontotemporal areas. Ictal EEG showed generalized
slow waves followed by low-voltage fast activities during
generalized tonic seizures or head drops, but did not aid in the
lateralization of the epileptogenic area. Based on the results of a
Phase I study and ictal/interictal iEEG monitoring, the patient
underwent a right frontal resection at 3 years of age and was free of
seizures for 2.5 years before his seizures recurred at 6 years of age.
The posterior margin of the pre-resection site was further resected,
and the patient has been free of seizures for 1.6 years (see Fig. 2b
for the final resection areas marked on the electrode grids).
Pathologic result was classified as focal cortical dysplasia (CD)
type. The EEG after reoperation showed nearly normalized
background activities and no epileptiform discharge.

The second subject (JMS) was a 2-year-old boy with severe
mental impairment, who had suffered from refractory epilepsy since
5 months of age. Seizures presented as head drops and atypical
absences and were intractable to several available antiepileptic
medications. Brain MRI showed a blurring of the gray-white matter
interface on the right frontal area. FDG-PET scans did not reveal any
asymmetric hypometabolism, and slow ictal SPECT injection was
unsuccessful. Slow ictal SPECT injection means infusion of °™Tc-
ethyl cysteinate dimer at a regular velocity throughout 2 min from
the first repetitive spasms by continuous injection. Continuous
video EEG monitoring consistently showed abundant generalized
slow spikes and waves and generalized paroxysmal fast activities, as
well as localized epileptiform discharges in the right frontal area.
Ictal EEG showed generalized slow waves followed by electrodecre-
mental fast activities during head drops, but did not aid in the
lateralization of the epileptogenic area. According to the results of a
Phase I study and ictal/interictal iEEG monitoring, the right frontal
area and right anterior temporal lobe (see Fig. 3b for the resection
area) were resected during surgery. This patient has been free of
seizures for 5.6 years without medication. The pathologic result was
classified as focal CD type. The EEG after operation revealed nearly
normalized background activities only with occasional multifocal
sharp waves.

The third subject (SW]) was a 3-year-old boy with severe
mental impairment (IQ of 29) who had developed refractory
epilepsy at 18 months of age. This patient presented with two
types of seizures, generalized tonic spasms and staring spells,
which available antiepileptic medications were not able to
suppress. The MRI findings for pre-surgical evaluation when the
patient was 3 years old showed suspicious but not definite cortical
thickening on the right frontal area. FDG-PET also revealed focal
hypometabolism on the right frontal lobe and SISCOM, which was
obtained via a slow ictal SPECT injection protocol, lateralized
consistently to the right frontotemporal area with an epileptogenic
focus. Continuous video EEG monitoring showed frequent
generalized slow spikes and waves and generalized paroxysmal
fast activities and localized epileptiform discharges or bisynchro-
nous sharp waves in the right frontotemporal areas. Ictal EEG
showed generalized slow waves followed by low-voltage fast
activities during generalized tonic seizures, but did not aid in the
lateralization of the epileptogenic area. Based on the results of a
Phase I study and ictal/interictal iEEG monitoring, the patient
underwent a right frontal resection when he was 3 years old, which
reduced the frequency of his seizures but did not control them
completely. The right inferior frontal gyrus and right temporal area
were further resected, and this subject has been free of seizures for
1.6 years on a reduced number of medications (see Fig. 4b for the
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final resection areas marked on the electrode grids). Pathologic
result was classified as focal CD type. The EEG after reoperation
revealed nearly normalized background activities and no epilepti-
form discharge.

2.2. Determination of surgical resection area

We used a variety of neuroimaging modalities to determine the
surgical area. All patients were examined using a video-EEG
monitoring system with electrodes placed according to the
international 10-20 system to define a semiology of habitual
seizures and to identify epileptogenic foci. Epileptogenic areas
were delineated primarily through interpretation of EEG data, and
other imaging modalities were used to reinforce these findings.
Intracranial EEG monitoring using subdural electrodes was also
used to determine surgical resective margins. Preoperative and
intraoperative functional mapping and intraoperative ECoG were
also performed when necessary.'®1°

Standard MRI was performed with conventional spin-echo T1-
weighted sagittal, T2-weighted axial, flair axial, oblique coronal,
and flair oblique coronal sequences, as well as with ultrafast
gradient echo T1-weighted 3D coronal sequences. A Philips MRI
Achieva 3.0 T Release 2.5.3.3 (USA) was used to acquire seizure-
specialized sequences, termed seizure phase I images, in accor-
dance with the protocol described in our previous study.'®

PET images were acquired using a GE ADAVANCE scanner (GE,
Milwaukee, WI, USA) in 3D mode. The transaxial resolution of the
system was 5.2 mm full-width-half-maximum (FWHM) at the
center of the field of view (FOV). Approximately 5 mCi of 18F-FDG
was injected intravenously. The emission scan began 40 min after
injection and lasted 15 min, and an 8 min transmission scan was
subsequently acquired for the purpose of attention correction.

To acquire SISCOM images, ictal SPECTs were obtained through
the prolonged continuous slow injection of a 9°™Tc-ethyl
cysteinate dimer (ECD) when the observer detected the first ictal
spasm of a cluster. Prolonged continuous slow injection refers to
infusion via continuous injection at a regular velocity for 2 min
from the onset of the first repetitive brief seizures. At least three
habitual brief tonic spasms or head drops were recorded during
injection of ECD. SISCOM images were constructed using a UNIX-
based workstation with image-analysis software packages (ANA-
LYZE 7.5 and Analyze/AVW; Biomedical Imaging Resource, Mayo
Clinic Foundation, Rochester, MN, USA).

The surgical area was defined based on the clinical, neuroim-
aging, and electrophysiological results. The resection margin for
epilepsy of a neocortical origin was defined by (1) the presence of
either a discrete lesion on MRI and functional neuroimages
compatible with ictal or interictal intracranial EEG, (2) various
interictal intracranial EEG findings including > 3 repetitive spikes
per second, runs of repetitive spike and slow wave discharges,
localized or spindle-shaped fast activities and electrodecremental
fast activities, and (3) the absence of an eloquent cortex. The
diagnosis and classification of pathologic CD were made according
to the system of Palmini et al.?°

2.3. iEEG data acquisition

In all patients, ictal iEEG data were recorded using a
multichannel digital EEG acquisition system (Telefactor, Grass
Technologies) at a sampling rate of 200 Hz. The locations of the grid
and strip subdural electrodes were determined based on the
multimodal neuroimaging results, as described in the previous
section (see Figs. 2b, 3b, and 4b for the grid and strip electrode
locations). The recorded iEEG data were reviewed by an
epileptologist, and 16 to 19 seizures were observed per subject.
Seizure onset times were identified visually by the epileptologist

with the aid of video monitoring. Fig. 1a shows an example of the
ictal iEEG signals recorded at 104 electrodes from a single subject
(LYS); these signals are segmented with respect to the ictal onset
time centered at 5sec. No specific pre-processing procedures
except for baseline correction and 60 Hz notch filtering were
applied to the raw iEEG data.

2.4. Localization of ictal onset zone with the DTF method

Digital iEEG recordings from three LGS patients were analyzed
using the DTF method® to localize the ictal onset zone. The DTF
method has been demonstrated to be a useful tool for the analysis
of causal interactions among several signals over various
frequency bands, and the procedures have been described in
detail in previous studies.®?! DTF is formulated in the framework
of the multivariate autoregressive (MVAR) model.??72> In the
framework of the MVAR model, a multivariate process can be
described as a data vector X of M source signals: X(t)=(X;(¢),
Xo(t), ..., Xm(t))". The MVAR model can then be constructed as

X(0) = S AX(E — ) + (D), (1)
n=1

where E(t) represents a vector composed of white noise values at
time t, A, is an M x M matrix composed of the model coefficients,
and p is the model order. In the present study, the model order was
determined by means of criteria derived using the Bayesian
information criterion (BIC).?° The BIC generally penalizes free
parameters more strongly than does the Akaike information
criteria,?® thereby preventing over-fitting due to excessively large
model orders. Average model orders for subjects LYS, JMS, and SW]
were 5.55 + 1.10, 4.44 + 1.09, and 8.05 + 1.08, respectively. We also
assured that slight changes in model order (1) did not influence the
resultant DTF patterns. The MVAR model was then transformed into
the frequency domain as follows:

X(f) = A (HE(f) = H(fE(S), (2)

where f denotes a specific frequency and the H(f) matrix is the so-
called transfer matrix, which is defined as

-1
H(f) =AT'(f) = (iAneiznant> . Ao=-1, (3)

n=0

where [ is an identity matrix.
The DTF was defined in terms of the elements of the transfer
matrix Hj as

206y _ Hij(f)
) =S (1P

where y;i(f) denotes the ratio between inflow from signal j to signal
i and all inflows to signal i, and k is the number of signals. The DTF
ratio ranges between 0 and 1, with values close to 1 indicating that
signal i is caused by signal j. In contrast, values close to O indicate
that there is no information flow from signal j to signal i at a
specific frequency.

To determine the frequency band of interest, the time-domain
iEEG signals were transformed into frequency domains using the
short-time Fourier transform (STFT). For the STFT calculation, we
used a “spectrogram” function implemented in Matlab (ver. 7.8,
Mathworks Inc., USA). The analysis window used for the STFT
calculation was the Kaiser window with 256 data samples, an 80%
overlap rate, and a beta value of 5.

Fig. 1 shows an example of the time-frequency spectrogram
(Fig. 1b) obtained from an ictal event of a subject’s (LYS) iEEG data
(Fig. 1a), where the ictal onset time was centered at 5s. We
observed distinct increases in the spectral power around the ictal
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Fig. 1. An example of ictal iEEG signals and a time-frequency spectrogram (an ictal event of subject 1): (a) Ictal iEEG data recorded from subdural grids and strips during 10 s.
The ictal onset time was 5 s. (b) Time-frequency spectrograms estimated for 104 subdural electrodes. Values in the spectrogram were normalized with respect to the
maximum. The spectrograms were used to determine the frequency bands of interest. Distinct changes in spectral power can be observed around the ictal onset time,

covering the entire alpha, beta, and gamma frequency bands.

onset time in most iEEG channels. The frequency band that
showed distinct changes in spectral power was very broad,
covering approximately the entire alpha, beta, and gamma
frequency bands. Similar changes were observed in all ictal
events of the three patients. Based on the time-frequency analysis,
we determined the frequency band of interest (FOI) to be 8-50 Hz
for all subjects. We confirmed through several simulations that
the bandwidth of FOI had a negligible influence on the DTF
analysis results, even when the FOI was restricted to only the
alpha frequency band (8-12 Hz).

We then evaluated the DTF values for each ictal event. We set
the analysis time window to 800 time samples (4 s) centered at
each ictal onset time, considering the duration of the ictal events.

We also confirmed that different window sizes ranging from 3.5 s
to 5s did not influence the resultant outflow patterns. The DTF
values y;(f) were then averaged over the FOI (8-50Hz in the
present study), resulting in a single value, denoted as t;; between a
pair of signals i and j.

To quantify the extent to which an individual signal affects the
generation of other signals, the averaged outflow of an ith signal
was evaluated as

1 k
OF; =kjj¥1 Tjis (5)
J#i
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0.3

Fig. 2. The distributions of outflow values calculated for subject 1: (a) 3D outflow maps estimated for 20 ictal events; (b) the surgical resection areas (red color) marked on
subdural electrodes. Numbers in (a) represent the event number. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

the article.)

where k is the number of signals. Similarly, the averaged inflow of
the ith signal can be evaluated as

IFi:m Z Tij- (6)

However, we did not use this measure in the present study, as
outflow values can localize ictal signal generators better than can
inflow values.'''®> Zones with higher outflow values can be

regarded as probable ictal onset zones. All of the above processes
were performed using in-house software coded with Matlab.
After evaluating the outflow value for each iEEG signal, the
distributions of the outflow values were illustrated on 3D brain
images (see Fig. 2). The cortical surface model was generated from
the individual T1-weighted MR images using CURRY6 for Windows
(Compumedics Inc., USA). The locations of the subdural electrodes
were obtained from the individual CT images and were registered
on the segmented cortical surface model semi-automatically using
the same software. The resultant outflow maps were generated
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04

Fig. 3. The distributions of outflow values calculated for subject 2: (a) 3D outflow maps estimated for 16 ictal events; (b) the surgical resection areas (red color) marked on
subdural electrodes. Numbers in (a) represent the event number. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

the article.)

using Matlab. Finally, the estimated ictal onset zones were
compared with the surgical resection areas of each LGS patient.

3. Results

We first estimated the DTF values of the iEEG signals recorded
from the three LGS patients and then overlayed the averaged outflow
values defined in (5) on each subject’s 3D anatomical images. Fig. 2
shows the distributions of the outflow values evaluated for subject 1
(LYS), as well as the surgical resection area marked on the subdural
electrodes. In this case, 20ictal events measured from 104 electrodes
were analyzed. The 3D outflow maps depicted in Fig. 2a consistently
showed high outflow values around the right dorsolateral prefrontal
cortex (DLPFC) for all ictal events; these areas coincide well with the
surgical resection areas depicted in Fig. 2b. Specifically, in event
numbers 1, 2, 6, 7, 12, 14, 16, 18, and 20, highly focalized outflow
distributions were observed around the border among two large
subdural grids and within two strips located at the prefrontal lobe.

Although some spurious or widespread outflow distributions were
also observed outside of the resection areas in events 3, 4, 9, 10, 11,
17, and 19, the overall distributions were not very different from the
common outflow patterns, and all of them overlapped with the
resection areas.

Fig. 3a shows the distributions of the outflow values for subject
2 (JMS). In this patient, 16 ictal events acquired from 100
electrodes were analyzed. The outflow distributions observed in
this patient showed the most consistent pattern among those of
the three LGS patients considered in the present study, with a wide
distribution over the superior DLPFC and premotor cortex. None of
the events showed uncommon outflow distributions. A compari-
son of the outflow distributions with the surgical resection areas
depicted in Fig. 3b clearly demonstrates that the anterior part of
the outflow distribution overlapped with the resection areas.
However, we confirmed after blinded analysis that the posterior
part had been also identified as a primary ictal onset zone based on
other pre-surgical evaluation methods but this region had been
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0.4

Fig. 4. The distributions of outflow values calculated for subject 3: (a) 3D outflow maps estimated for 19 ictal events. Strip electrodes implanted in the frontal medial wall are
presented separately for visualization purposes; (b) the surgical resection areas (red color) marked on subdural electrodes. Numbers in (a) represent the event number. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

excluded from the final epilepsy surgery plan, as it might be
associated with the patient’s motor functions. Interestingly, the
middle and inferior temporal gyri included in the surgical resection
areas were not identified as primary ictal onset zones in the
present analysis. These results suggest that activity around the
temporal lobe may be propagated from another region, although
we have no way to test this hypothesis. In future studies, we intend
to determine the accuracy of our approach by quantitatively

comparing the present results with those from different imaging
modalities.

Fig. 4a shows the distributions of the outflow values for subject
3 (SW]). The strip electrodes implanted in the frontal medial wall
are presented separately. In this subject, 19 ictal events recorded
from 116 electrodes were analyzed. Although the outflow
distributions were not as consistent as those of subjects 1 and
2, most maps showed high outflow values around the temporal
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lobe, prefrontal cortex, and medial frontal eye fields, with
fairly good overlap with the surgical resection areas depicted in
Fig. 4b.

4. Discussion

In the present study, we demonstrated that directional
connectivity analysis of iEEG recording data can be a useful
auxiliary tool for delineating surgical resection areas in LGS
patients with abundant generalized epileptiform discharges.

4.1. Identification of ictal onset zones in LGS

LGS is one of the most intractable catastrophic epilepsies in
children, characterized by multiple types of generalized
seizures, interictal bilaterally synchronous slow spike-waves
and paroxysmal fast activity in EEG, as well as progressive
cognitive impairment.’®> Most patients with LGS have bilateral
diffuse encephalopathy, but focal lesions that contribute to
secondary generalized epileptic encephalopathy can be identi-
fied using other localized EEG findings such as persistent
localized polymorphic slowings, spindle-shaped fast activities,
localized paroxysmal fast activities, focal subclinical seizure
activities, brief ictal rhythmic discharges, and electrodecre-
ments.'” In addition, recent advances in neuroimaging techni-
ques with MRI as well as PET/SPECT could improve the detection
of partial lesions.'® Recently, Cleveland’s group reported
successful outcomes of resective epilepsy surgery in children
with brain MRI lesions, despite abundant generalized and
multiregional EEG abnormalities.’® For ictal SPECT, we pro-
longed the injection of ECD during repeated brief seizures
instead of using the typical rapid shooting of the tracer. Using
this slow ictal SPECT protocol, we were able to detect significant
SISCOM findings in the ipsilateral epileptogenic area. Further-
more, we expanded our surgical experience to include crypto-
genic LGS patients without brain MRI abnormalities.
Nevertheless, despite these advanced modalities, it is still
difficult to correctly localize ictal onset zones in patients with
LGS with abundant ictal/interictal generalized epileptiform
discharges; additional refinement techniques to confirm ictal
onset zones are therefore in great demand. The present study
originally applied the DTF technique, which has been widely
used to identify ictal onset zones in focal epilepsy, to the
localization of ictal onset zones in LGS patients. The analysis
results demonstrated that areas with high outflow values
corresponded well with surgical resection areas identified by
multiple neuroimaging modalities, suggesting that directional
connectivity analysis can be used as an auxiliary tool to confirm
the ictal onset zones identified using traditional neuroimaging
modalities, as well as an alternative modality to determine the
ictal onset zones of LGS patients.

4.2. The DTF technique as a tool for localizing ictal onset zones

Franaszczuk et al.'° first applied the DTF technique to human
iEEG data acquired from patients with mesial temporal lobe
epilepsy. They recorded three patients’ iEEG using a combined
subdural grid and depth electrode array during complex partial
seizures. They demonstrated that the patterns of seizure propaga-
tion could be identified successfully using DTF analysis. Since that
study, Franaszczuk and Bergey'! have applied the same analysis
method to iEEG data acquired from patients with lateral temporal
lobe epilepsy and compared the resultant propagation patterns
with those of mesial temporal lobe epilepsy. Their results
suggested that the DTF-based analysis of epileptic networks is a
powerful technique, particularly when the patterns of seizure

propagation cannot be readily identified from visual inspection of
the iEEG signals.

Recently, a combinatory approach to integrate EEG source
localization with the DTF method was proposed’ to distinguish
ictal onset zones from irritative zones activated by propagation of
epileptiform activities. These authors used high-density scalp EEG
to record ictal epileptiform activity and applied a spatiotemporal
source localization method called the first principle vectors (FINEs)
algorithm to extract the time series of primary and secondary
source activities. The DTF method was then used to differentiate
the ictal onset zones with cortical areas activated by propagations.
Ding et al. applied their novel approach to five patients with focal
epilepsy and demonstrated that the identified ictal onset zones
coincided well with the observations from either MRI lesions or
SPECT scans. Kim et al.'* attempted to localize epileptogenic
sources from ictal ECoG recordings based on Ding et al.’s’
approach. They applied the FINEs algorithm along with the DTF
method to six epilepsy patients who had undergone successful
surgery and showed that the resultant 3-D ictal source locations
coincided with surgical resection areas as well as conventional 2-D
electrode-based source estimates.

Most recently, Wilke et al.!? applied Franaszczuk et al.’s
method'®!! to localize generators of interictal epileptiform
activity in 11 pediatric patients with neocortical extra-temporal
lobe epilepsy. They confirmed that the ictal onset zones identified
using the DTF method were consistent with those identified via
visual review of ictal ECoG recordings by experienced electro-
encephalographers. Their study demonstrated that the DTF
method can accurately localize the ictal onset zone, despite the
rapid speed at which the epileptiform activity spreads throughout
the neocortex. In another report by the same group,'® they applied
the same method to identical data sets and compared the ictal
onset zones identified using the DTF method with those identified
using source activity maps. Their results provided evidence
suggesting that the DTF method is more accurate than are the
conventional iEEG analysis methods.

The directional connectivity analysis that we performed in this
study has an identical technical background to those of the
previous studies listed above.'®-'®> However, contrary to the
previous studies that attempted to localize the epileptogenic focus
in patients with focal epilepsy, we used the DTF method to identify
ictal onset zones in patients with generalized epilepsy (LGS),
demonstrating the feasibility of using the DTF method as a
subsidiary neuroimaging modality for pre-surgical evaluation of
LGS patients. In future studies, we hope to apply the present
method to other types of intractable generalized epilepsies and
also to investigate the accuracy of the localization of ictal onset
zones by comparing the DTF results with results from existing
neuroimaging modalities such as fMRI, PET, and SPECT.

In addition to the DTF technique, some new methods have
been recently introduced to estimate the directional connectivity
among simultaneously recorded neural signals, such as entropy
transfer (or directed information transfer: DIT),?” phase slope
index (PSI),?® and adaptive DTF (aDTF).2° Although the DTF
technique has proven to be robust to noise or constant phase
disturbances,’® the resultant directional connectivity estimates
for non-stationary time series might not be as accurate as those
for stationary time series, a well-known limitation of all MVAR-
based methods. The new indices listed above have been
proposed to address the stationary issue of the MVAR-based
methods. Although the entropy transfer and PSI have demon-
strated enhanced performances in estimating directional con-
nectivity between non-stationary time series, more validation
studies are needed as these methods have not been applied to the
localization of ictal onset zones in epilepsy. The aDTF technique
adopted adaptive MVAR modeling and showed nice performance
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in localizing epileptogenic zones in some types of focal
epilepsy.?° Therefore, the applications of various connectivity
measures to the localization of ictal onset zones in LGS would be
an exciting topic that might provide us with a chance to obtain
more accurate localization results, which we hope to explore in
future studies.
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