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a b s t r a c t

Brain–computer interface (BCI) is a developing, novel mode of communication for individuals with severe
motor impairments or those who have no other options for communication aside from their brain
signals. However, the majority of current BCI systems are based on visual stimuli or visual feedback,
which may not be applicable for severe locked-in patients that have lost their eyesight or the ability
to control their eye movements. In the present study, we investigated the feasibility of using auditory
steady-state responses (ASSRs), elicited by selective attention to a specific sound source, as an electroen-
cephalography (EEG)-based BCI paradigm. In our experiment, two pure tone burst trains with different
beat frequencies (37 and 43 Hz) were generated simultaneously from two speakers located at differ-
ent positions (left and right). Six participants were instructed to close their eyes and concentrate their
attention on either auditory stimulus according to the instructions provided randomly through the speak-
ers during the inter-stimulus interval. EEG signals were recorded at multiple electrodes mounted over
the temporal, occipital, and parietal cortices. We then extracted feature vectors by combining spectral
power densities evaluated at the two beat frequencies. Our experimental results showed high classi-
fication accuracies (64.67%, 30 commands/min, information transfer rate (ITR) = 1.89 bits/min; 74.00%,

12 commands/min, ITR = 2.08 bits/min; 82.00%, 6 commands/min, ITR = 1.92 bits/min; 84.33%, 3 com-
mands/min, ITR = 1.12 bits/min; without any artifact rejection, inter-trial interval = 6 s), enough to be
used for a binary decision. Based on the suggested paradigm, we implemented a first online ASSR-based
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. Introduction

Brain–computer interface (BCI, sometimes referred to as
rain–machine interface) is a technology that translates brain sig-
als into simple commands that can control external devices or

nto messages with which one can communicate (Wolpaw et al.,
002). The major targets of BCI systems have been disabled indi-
iduals who cannot freely move or control specific parts of their
ody because of serious neurological disease or injury, such as
myotrophic lateral sclerosis (ALS, also referred to as Lou Gehrig’s

isease) or brainstem stroke. Since many of these patients do not
ave cognitive impairment, their brain activity can be used as a
ource for communication. Among the various types of human
rain mapping techniques used for implementing BCI systems, such
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the possibility of materializing a totally vision-free BCI system.
© 2011 Elsevier B.V. All rights reserved.

as functional magnetic resonance imaging (fMRI) and near infra-
red spectroscopy, electroencephalography (EEG) has been the most
widely used modality because it is noninvasive, economical, harm-
less, and readily applicable (Wang et al., 2004; Hoffmann et al.,
2008; Nijboer et al., 2008).

One of the most important factors necessary for materializing
a successful EEG-based BCI system is the selection of appropri-
ate mental tasks that can elicit distinct task-specific brain activity
patterns. To translate the acquired neural signals into appropri-
ate commands, various experimental paradigms and tasks have
been introduced, including visual attention tasks such as the P300
speller (Farwell and Donchin, 1988; Krusienski et al., 2008; Sellers
and Donchin, 2006); steady state neural responses elicited while

one is gazing a certain visual stimulus flickering with a specific fre-
quency (steady state visual evoked potential: SSVEP) (Lalor et al.,
2005; Lin et al., 2006; Middendorf et al., 2000); mental tasks associ-
ated with motor imagery (Decety and Ingvar, 1990; Jeannerod and
Frak, 1999; Pfurtscheller and Neuper, 1997) or mental calculation

dx.doi.org/10.1016/j.jneumeth.2011.02.007
http://www.sciencedirect.com/science/journal/01650270
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Keirn and Aunon, 1990; Penny et al., 2000), and so on. Most of
he mental tasks and paradigms listed above use visual stimuli,
isual feedback, or both and are thereby applicable only to patients
hose visual function is not impaired. In practice, however, some
atients with severe neurological disorders, such as ALS and com-
letely locked-in state (CLIS), often have difficulty controlling their
oluntary extraocular movements or fixing their gaze on specific
isual stimuli. Even for those who have normal visual function,
azing at stimuli for a long time can easily cause fatigue or loss
f concentration. Moreover, EEG signals recorded at frontal elec-
rodes can be contaminated by electrooculogram (EOG) elicited
y eye-blinking and eyeball movements. A recent experimental
tudy demonstrated that the performance of the P300-based speller
aradigm can be substantially influenced by eye gaze (Brunner
t al., 2010), which strongly suggests that the use of visual stim-
li or cues might not be appropriate for those who have difficulty

n gazing at specific target stimuli. In other mental task paradigms
hat do not directly use visual stimuli, visual cues or feedbacks are
enerally provided to the participants so as to instruct or assist
hem in performing the given mental tasks (Hwang et al., 2009).
ven in such cases, the recorded signals can be contaminated by
nwanted visual evoked responses. Therefore, developing new BCI
aradigms that are not dependent on visual stimuli remains one of
he challenging issues in modern BCI research (Nijboer et al., 2008).

To overcome the limitations of conventional BCI paradigms,
ome researchers have turned to auditory stimuli (Hill et al.,
005; Kanoh et al., 2008; Lopez et al., 2009; Klobassa et al., 2009;
chreuder et al., 2010) as an alternative to visual stimuli. Most
f the previous studies used auditory oddball paradigms, which
hare most of the basic concepts with conventional visual BCI
aradigms. Two of the earliest studies (Hill et al., 2005; Kanoh
t al., 2008) independently introduced an auditory BCI paradigm
n which the authors attempted to discriminate “attended” brain
esponses from “unattended” ones when two simultaneous audi-
ory oddball streams were presented to subjects. In a study by Hill
t al. (2005), deviant sounds were generated alternatively at either
right or left sound source, and subjects were asked to concentrate
n one of the two sound sources. They extracted the feature vectors
rom the changes in the amplitude of the averaged event-related
otential (ERP). Kanoh et al. (2008) used a similar paradigm, where
he subjects were instructed to concentrate their attention on one
f two oddball audio streams with different frequencies presented
lternately with a short inter-stimulus interval. They used the peak
mplitudes of P300 and mismatch negativity (MMN) as the fea-
ure vectors to classify the subject’s selective attention. Recently,
alder et al. (2010) refined the auditory oddball paradigm and eval-
ated various auditory stimuli with different volumes, pitches, or
irections.

Another group of researchers attempted to modify the P300
peller paradigm, which is a well-established protocol in BCI
esearch (Donchin et al., 2000), into an auditory version (Klobassa
t al., 2009). Instead of presenting matrix-type visual stimuli,
hey presented different environmental sounds to participants and
etected which sound the participants were attending to. Spa-
ial hearing was also adopted as a new auditory BCI paradigm
Schreuder et al., 2010), which used eight speakers spatially dis-
ributed around a participant and detected a single sound source
hat the participant concentrated on.

Apart from the oddball paradigms or modified oddball
aradigms (P300 speller), (Lopez et al., 2009) investigated whether
he auditory steady-state response (ASSR) is modulated by auditory

elective attention (ASA) to a specific sound stream and discussed
he possibility of using the ASSR as a new BCI paradigm. They
rovided eight participants with two amplitude-modulated (AM)
ound streams (1 kHz and 2.5 kHz) with different modulation fre-
uencies (38 Hz and 42 Hz) to both ears simultaneously (1 kHz tone
ce Methods 197 (2011) 180–185 181

with a 38 Hz modulation frequency for the left ear and 2.5 kHz
tone with a 42 Hz modulation frequency for the right ear). The
participants were then asked to either concentrate their attention
on the stimulus from the left ear or ignore both auditory stim-
uli according to the instructions appearing on a monitor. In six
out of eight participants, the spectral density of alpha rhythm was
inversely proportional to that of the modulation frequency for the
left ear (38 Hz), providing evidence that selective attention can
modulate ASSR. They also showed, using the self organizing map
(SOM) method, that the attended and ignored conditions could be
clearly classified into two clusters, demonstrating the possibility of
using ASSR modulated by auditory selective attention as a new BCI
paradigm.

In the present study, inspired by the pilot study of (Lopez et al.,
2009), we further investigated whether ASSR can be a feasible fea-
ture for a practical BCI system by implementing a modified BCI
paradigm to classify one’s auditory selective attention and by eval-
uating the classification accuracy of the BCI system. Similarly to
the previous study, six participants were presented with two pure
tone burst trains (2.5 kHz and 1 kHz) with different beat frequen-
cies (37 Hz and 43 Hz) to both sound fields simultaneously (2.5 kHz
tone with a 37 Hz beat frequency for the left sound field and 1 kHz
tone with a 43 Hz beat frequency for the right sound field). In
our modified paradigm, the participants were asked to close their
eyes and concentrate their attention on either auditory stimulus
according to the instructions provided randomly through speakers
during the inter-stimulus interval (ISI). Indeed, to the best of our
knowledge, our paradigm is one of the first auditory BCI paradigms
that did not use any visual information during the entire experi-
ment. Our paradigm can be regarded as an auditory version of the
conventional SSVEP-based BCI paradigms that use multiple spa-
tially separated visual stimuli flickering at different frequencies
(Bin et al., 2009; Luo and Sullivan, 2010). Similarly to the conven-
tional SSVEP-based BCI systems, we extracted feature vectors from
spectral power densities evaluated at the two beat frequencies.
We then classified the participants’ selective attention and eval-
uated the accuracy of the ASSR-based BCI system. Furthermore, we
used the proposed paradigm and analysis methods to implement
an online ASSR-based BCI system to further demonstrate whether
our paradigm could be used as a successful BCI paradigm.

2. Methods

2.1. Participants

Six healthy volunteers (one female and five male, mean age
25.0 ± 5.0 years) were recruited among the graduate and under-
graduate students in the Department of Biomedical Engineering
of Yonsei University. Before the experiment, all participants were
given a detailed, written summary of the experimental procedures.
Participants signed a written consent and received adequate reim-
bursement for their participation. The study protocol was approved
by the Institutional Review Board (IRB) of Yonsei University, Korea.

None of the participants reported neurological or psychiatric
disorders or previous head injury that might affect the experiment.
It was also confirmed that all subjects had normal or corrected-
normal vision and normal hearing. Most participants except one
(LH) were reported as right-handers. No subject had any previous
experience or knowledge of BCI studies. All experiments were con-
ducted in the Bioelectromagnetics and Neuroimaging Laboratory
of Yonsei University.
2.2. Auditory stimuli

ASSR is a brain electrical response elicited when one is hear-
ing periodic amplitude modulated sinusoidal tones or click sound
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Fig. 1. Overall experimental environment: (a) a schematic diagram to elucidate the
experimental environment. Two speakers were placed 80 cm apart. The participants
were asked to adjust the position of the chair to a comfortable location while main-
taining equal distance (less than 60 cm from the speakers) from the two speakers.

which their magnetoencephalography (MEG) data demonstrated
that the ASSR with origin in primary auditory cortex could be
enhanced during specific attention. The sampling rate was set at
512 Hz in all experiments. Most of the experiments were performed
82 D.-W. Kim et al. / Journal of Neur

rains (Picton et al., 2003; Ross et al., 2000, 2002, 2003). ASSR
enerally shows increased spectral density around the modulation
requency of the sound stream. The optimal modulation frequency
as been reported as values ranging from 30 Hz to 50 Hz, peaking
round 40 Hz (Engelien et al., 2000; Pastor et al., 2002; Picton et al.,
987). Therefore, to obtain a sufficient signal-to-noise ratio (SNR) of
SSR, we chose two frequencies around 40 Hz, 37 Hz and 43 Hz, as

he modulation frequencies (beat frequencies in the present study).
he carrier frequencies of the two auditory stimuli were set to
.5 kHz and 1 kHz, respectively, so that the subjects could easily
istinguish each sound stream (Lopez et al., 2009). We used pure
one burst trains; each generated using MATLAB (The MathWorks,
atick, MA, USA, Version 7.7.0) at a sampling rate of 44,100 Hz. The
ulse widths of the 37 Hz and 43 Hz pure tone pulses were 13.5 ms
nd 11.6 ms, respectively. The duration of each trial was 20 s. The
uditory stimulus for each trial was exported in the waveform audio
le format (*.wav).

.3. Experimental protocols

Participants sat in a comfortable armchair in front of a pair of
peakers (BR-1000A, Britz International, Paju, Kyunggi-Do, Korea),
hich were positioned 80 cm apart. The participants were asked

o adjust the position of the chair to a comfortable location while
aintaining equal distance (less than 60 cm from the speakers)

rom the two speakers (see Fig. 1). In each trial, the participants
ere presented with 2.5 kHz tone burst trains with 37 Hz beat fre-

uency for their left sound field and 1 kHz tone burst trains with
3 Hz beat frequency for their right sound field. Since the stimuli
ere similar to those frequently used to elicit ASSR in previous

tudies (Picton et al., 2003; Lopez et al., 2009), ASSRs peaking
round 37 Hz and 43 Hz were expected. Subjects were asked to
lose their eyes and remain as still as possible, particularly during
he acquisition intervals.

Fig. 2 shows the experimental paradigm used for the EEG record-
ngs in the present study. One segment of the auditory stimulus
asted for 20 s and a random interval of 6–10 s was inserted between
ach trial. Two seconds before the stimulus onset, five pulses of pure
one sounds were generated randomly from either the left or right
ide, to indicate which sound source they were to concentrate on.
he five pulses of pure tone sounds had the same carrier frequency
nd beat frequency as the main auditory stimulus (2.5 kHz carrier
requency and a 37 Hz beat frequency for the left sound field; 1 kHz
arrier frequency and a 43 Hz beat frequency for the right sound
eld) to help the participants recognize the direction of the stimu-

us more accurately. Our paradigm was implemented with TeleScan
.2 for Windows (Laxtha, Inc., Daejoen, Korea), which was also used
or the EEG data acquisition.

Each session consisted of 25 trials and lasted for approximately
0 min. Before the recording, one training session was performed to
amiliarize participants with the paradigm. The main experiment
as performed in two sessions with a 10-min inter-session rest. In

otal, we acquired EEG data sets for 50 trials: 25 for selective atten-
ion to the left-sided stimulus and the other 25 trials for selective
ttention to the right-sided stimulus.

.4. Data acquisition and processing

Electrodes were attached on the participants’ scalp according to
he international 10–20 system. The EEG signals were acquired at
our electrodes (Cz, Oz, T7, T8), which represent the motor, visual,

nd auditory cortical areas, using a multi-channel EEG acquisition
ystem (WEEG-32, Laxtha Inc., Daejeon, Korea) in a dimly lit, sound-
roof room. The four electrodes were selected considering previous
SSR studies (Lopez et al., 2009; Skosnik et al., 2007; Ross et al.,
000). Two midline electrodes, Cz and Oz, were also selected in the
The participants were presented with 2.5 kHz tone burst trains with a 37 Hz beat
frequency for their left ear and 1 kHz tone burst trains with a 43 Hz beat frequency
for their right ear; (b) a screenshot of the experiment showing one of the subjects
(JP) sitting in front of two speakers with four EEG electrodes attached on his scalp.

Lopez et al.’s study (2009) that investigated whether ASSR could
be modulated by selective attention. (Skosnik et al., 2007) inves-
tigated the effect of selective attention on the gamma-band ASSR
using multiple electrodes, and they reported statistically meaning-
ful ASSR value at Cz electrode. Two temporal lobe electrodes, T7
and T8, were selected according to a report by (Ross et al., 2000), in
Fig. 2. The experimental paradigm used in the present study. One segment of the
auditory stimulus lasted for 20 s and a random interval of 4–8 s was inserted between
each trial. The left speaker generated 2.5 kHz pure tone burst trains with a 37 Hz beat
frequency and the right speaker generates 1 kHz pure tone burst trains with a 43 Hz
beat frequency. Two seconds before the stimulus onset, five pulses of pure tone
sounds were generated randomly from either the left or right speaker.



oscience Methods 197 (2011) 180–185 183

a
e
w

b
o
w
e
a
e
o

2

t
a
W
d
C
C
t
u
T

r
s
c
t
d
w
m
s
t
f

c
i
a
F
f
p
a
T
f

3

o
a
T
r
w
m
b
s
p
t

a
s
S
s
v

tures were Cz43 (18.14%), followed by Cz37 (14.06%), T837 (9.70%),
Oz43 (8.01%), and Oz37 (7.45%), which were counted from all the
selected feature set tables for analysis window sizes larger than
10 s. The frequently selected features were mostly extracted from
D.-W. Kim et al. / Journal of Neur

t night to prevent unexpected noises that might occur during the
xperiments. The ground electrode was placed behind the left ear
ith the reference electrode on the opposite side.

The raw EEG data were segmented into 20-s epochs from the
eginning of the main auditory stream. No preprocessing meth-
ds, such as re-referencing, band-pass filtering, or artifact rejection,
ere applied to the present analysis. The frequency spectrums of

ach epoch were calculated using the fast Fourier transform (FFT)
lgorithm with a 1 s long sliding window with a 50% overlap. The
stimated frequency spectrums were accumulated and averaged
ver time for each epoch.

.5. Feature selection and classification

As candidates of feature vectors, we first evaluated the EEG spec-
ral densities of each electrode averaged over 37 ± 1 Hz (denoted
s Cz37, Oz37, T737, T837) and 43 ± 1 Hz (Cz43, Oz43, T743, T843).
e also evaluated the ratios between all possible pairs of spectral

ensities evaluated at the same modulation frequency (Cz37/T737,
z37/T837, Cz37/Oz37, T737/T837, T737/Oz37, T837/Oz37, Cz43/T743,
z43/T843, Cz43/Oz43, T743/T843, T743/Oz43, T843/Oz43) as well as
he ratios between the spectral powers of each electrode eval-
ated at different modulation frequencies (Cz37/Cz43, T737/T743,
837/T843, Oz37/Oz43).

To investigate the changes in classification accuracy with
espect to the number of feature vectors, we calculated the clas-
ification accuracy for all possible combinations of the 24 feature
andidates listed above, assuming the number of selected features
o be one, two, or three. To show the influence of the analysis win-
ow sizes (or analysis interval sizes) on the classification accuracy,
e also tested different analysis window sizes (2–20 s from the
ain auditory stimulus onset with a step size of 1 s). Since the first

econd might contain unwanted components elicited by the transi-
ion of attention and preparation for performing the task, the results
or window size of 1 s were not presented in the result section.

For the classification, we used a 10-fold cross-validation method
onsidering the small number of trials. We first divided the 50 trials
nto 10 equal-size folds, and for each validation 45 trials were used
s a reference data set and the other 5 trials were used as a test set.
or each trial of the test set, Euclidean distances from the average
eature vectors (each averaged to the left and right stimuli) com-
uted on the reference data set were compared, and the trial was
ssigned to a class based on whichever had the shorter distance.
he cross-validation was done separately for each of all possible
eature sets.

. Results

Fig. 3 shows the variations in classification accuracy averaged
ver the six participants with respect to the analysis window sizes
nd the number of feature vectors (please see the Supplementary
able file for values). We observed that higher classification accu-
acy could be obtained when larger numbers of feature vectors
ere used for the classification. The classification accuracy nearly
onotonically increased with respect to the analysis window sizes,

ut after approximately 10 s the accuracy no longer increased. Since
hort analysis window size guarantees more possible commands
er minute, the analysis window size of approximately 10 s was
he most appropriate.

Fig. 4 shows variations in the classification accuracy evalu-

ted for each participant with respect to the analysis window
ize when three feature vectors were selected (please see the
upplementary Table file for values). The six individual graphs
how similar and consistent shape with those of Fig. 3 and show
ery small differences in the overall averaged classification accu-
Fig. 3. Classification accuracy averaged over six participants with respect to differ-
ent analysis window sizes and different numbers of feature vectors (1, 2, and 3). The
exact values are summarized in Supplementary Table 7).

racies, with a standard deviation of only 2.11%. The maximum
classification accuracy of each participant was found at different
analysis window sizes and varied from 80% to 92%. The aver-
age of the maximum classification accuracy of each subject was
86.33 ± 3.54%, and the analysis window size that resulted in the
highest accuracy was 14.00 ± 2.94 s. Subject SB showed the highest
classification accuracy value (92%) among all of the participants,
while subject JP showed the highest overall classification accuracy
(81.26%). Although our cross-validation results using small num-
ber of trials might be somewhat biased for specific feature sets,
the high classification accuracy consistently exceeding the chance
level (50%) demonstrates the possibility of using ASSR for the binary
decision of BCI.

In the supplementary tables, we listed all of the selected feature
sets that resulted in the highest classification accuracy for each
analysis window size when three feature vectors were selected
(please find Supplementary Tables 1–6 that summarize the selected
feature sets for each of six participants). The data revealed that the
basis features evaluated from simple spectral density computations
(Cz37, Oz37, T737, T837, Cz43, Oz43, T743, and T843) were selected
more frequently than the other derived features, indicating that
the derived features play an auxiliary role, helping to increase the
overall classification accuracy. The most frequently selected fea-
Fig. 4. Classification accuracy for each participant with respect to the analysis
window sizes when three feature vectors were selected. The exact values are sum-
marized in Supplementary Table 8).
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Fig. 5. An EEG spectral density plot at Cz electrode averaged across the participants
with respect to two different conditions (red dashed line: attending to the left audi-
tory stimulus condition; blue solid line: attending to the right auditory stimulus
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ondition). The fast Fourier transform (FFT) algorithm with the same parameters
sed for the feature extraction was used for the spectral density calculation. (For

nterpretation of the references to color in this figure legend, the reader is referred
o the web version of the article.)

ne of the midline electrodes, specifically in Cz electrode, which
oincides well with the previous study that reported the most sig-
ificant increment of ASSR in the Cz electrode (Skosnik et al., 2007).

To further verify that the power spectral density of each beat fre-
uency would be modulated by selective attention, we calculated
he power spectral density of EEG signals recorded at Cz electrode.
ig. 5 shows the power spectral density at Cz electrode averaged
cross the participants with respect to two different conditions
attending to left auditory stimulus and attending to right auditory
timulus). To evaluate the power spectral density, the FFT algo-
ithm with the same parameters used for the feature extraction
as applied. The EEG power spectral density plot depicted in Fig. 5

howed two clear ASSRs peaking at 37 Hz and 43 Hz. It could be
bserved from the figure that the EEG spectral density was mod-
lated by auditory selective attention to a specific sound source,
emonstrating that switching attentions between two different
ounds would generate classifiable feature vectors.

We also implemented a pilot online ASSR-based BCI system and
ested it to one of the participants (JP, female, 24 years old). Right
efore the online experiment, we selected an optimal feature set
rom a preliminary offline experiment. The experimental paradigm
nd analysis methods used for the feature selection were identical
o those of previous offline experimental studies, except that the
ocation of the reference electrode was moved from left ear to the
articipants’ forehead. This change was made to avoid the poten-
ial influence of the reference electrode on the laterality between
he electrodes T7 and T8. Since the participant was asked to close
er eyes during the entire offline and online experiments, we con-
rmed that EOG artifact did not affect the recorded signals.

In our online experiment, the participant was instructed ver-
ally to attend to either auditory stimulus, left stimulus or right
timulus, in a random order. After the instruction was made, the
xperimenter manually turned on a switch that starts generating
wo different tone burst trains from speakers located on the left
nd right sides of the participant. Then, the main computer system
tarted recording the EEG signals, and at the same time calculated
he values of 3 feature vectors. After 10 s from the beginning of

he recording, our BCI system classified the participant’s selective
ttention in real time and displayed the decision on the monitor
creen so that the instructor can evaluate the result. All the anal-
sis methods were identical to those used in the offline analyses.
ince the participant was asked to close her eyes during the experi-
ce Methods 197 (2011) 180–185

ment, she could not have any information on whether the previous
decision was right or wrong. In our pilot online experiment, we did
not provide the participant with any feedbacks as they might affect
her attention. The online experiment consisted of 14 continuous
trials (7 for right stimulus and 7 for left stimulus) and showed a
fair classification accuracy of 71.4%. The readers can watch the full
video of our online experiment from the supplementary movie file
attached in this article.

4. Discussion

In the present study, we investigated whether ASSR modulated
by selective attention to a specific sound stream can be used to
create a practical auditory BCI system, with the goal of classifying
the intentions of individuals who have difficulty controlling their
vision. Inspired by the conventional SSVEP-based BCI paradigms
that use multiple spatially separated visual stimuli with different
flickering frequencies, we presented the participants with multiple
spatially separated auditory stimuli with different tones and mod-
ulation frequencies. In our experiments performed to six healthy
volunteers, we were able to discriminate which sound source the
participants were selectively attending to with high classification
accuracy fairly exceeding the chance level of a binary decision
(50%), demonstrating the feasibility of using ASSR modulated by
selective attention as one of the promising BCI features.

Our paradigm has several advantages that are suitable for use in
practical BCI systems. First, we did not apply any complex prepro-
cessing procedures. In fact, we did not even use basic filtering or
artifact rejection processes, which would be advantageous in real-
izing an efficient real-time BCI system. Second, since the paradigm
was simple and intuitive, the participants could easily understand
and get accustomed to the target tasks, for which they were only
asked to concentrate their attention on either the left or right sound
source. Therefore, the proposed paradigm overcomes one of the
drawbacks of mental task-based BCI paradigms that require com-
plex and time-consuming training processes. Most importantly, we
did not use any visual information during the whole experiment,
considering that the main targets of auditory BCI systems would be
patients with advanced ALS or CLIS, who have difficulty controlling
visual fixation. In the present study, we did not use any types of
feedbacks; however, in a practical online ASSR-based BCI system,
the participants would also be provided with auditory feedbacks
(Nijboer et al., 2008). Then, a totally vision-free BCI system could
be realized.

In the conventional visual stimuli-based BCI paradigms, one of
the most important advantages of SSVEP-based BCI paradigms over
the P300-based BCI paradigms is that the SSVEP-based BCI can
generate command signals continuously by monitoring changes in
the spectral power density without interruption (Bakardjian et al.,
2010), while the P300-based BCI requires time intervals to wait
until the next flashing or deviant stimulus is given. We expect that
this advantage of SSVEP-based BCI would also be valid in our ASSR-
based BCI paradigm, as our present results indirectly demonstrated
that the classification accuracy exceeded the chance level even for
analysis window sizes as brief as 2 s.

Although the present study discussed the possibility of ASSR
in practical BCI applications, the current ASSR-based BCI paradigm
still needs to be refined and optimized reflecting the physiologi-
cal findings on ASSR. Unfortunately, however, the mechanisms of
ASSR still stay unclear; especially on the reason why the 40 Hz com-
ponent is most distinct. One of the hypotheses is that the spectral

power change of ASSR at 40 Hz might be caused by temporal coher-
ence of middle latency evoked responses (Stach, 2002). Another
possibility is that since 40 Hz may be the most preferred resonant
frequency of auditory neural circuits, the neural circuits might pro-
duce relatively large oscillations when a 40 Hz auditory stimulus
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Stach BA. The auditory steady-state response: a primer. Hear J 2002;55:10–8.
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s given (Picton et al., 1987). Yet another hypothesis is that top-
own attention processing in general can generate auditory evoked
amma band activity (Debener et al., 2003), but a more recent study
eported no significant increment in gamma band activity when a
0 Hz stimulus was provided (Skosnik et al., 2007). On the other
and, earlier studies on ASSR reported no significant relationship
etween ASSR and attention (Linden et al., 1987), whereas multi-
le recent studies have suggested that ASSR can be influenced by an

ndividual’s attention (Skosnik et al., 2007; Lopez et al., 2009). Fur-
her exploration of the mechanisms of ASSR should eventually con-
ribute to the realization of an optimized ASSR-based BCI system.

The research we present here focused on the feasibility of a
ractical ASSR-based BCI system that might help patients who
eed an alternative mode of communication. In future studies, we
ill pursue further improvements on the current paradigm. First,
ore studies are needed to extend the current paradigm to one

uitable for multi-class classification problems. For instance the
easibility of adding more sound streams with different beat fre-
uencies positioned at other distinguishable locations could be

nvestigated. Next, development of an asynchronous or self-paced
CI paradigm would potentially make the current paradigm more
ractical. All synchronous BCI paradigms need prior input that

nforms the system of when the participant will start to perform a
ask. However, synchronous BCI systems cannot take account of the
articipants’ will to perform a specific task. Indeed, such a system
sually enforces the participants to perform the task only when
n execution cue is given. If a participant is asked to ignore both
ound sources when they are unwilling to perform the task and if
uch an “ignore-all” condition is distinguishable from “attend-to-
eft” and “attend-to-right” conditions, it is expected that the system

ight detect the participant’s selective attentions asynchronously,
hich is an exciting prospect that we will explore in future stud-

es. Although the current results of our offline studies have shown
elatively low information transfer rate (ITR), of which the max-
mum value was 1.20 bits/min, we are expecting that the ITR of
ur system should be enhanced in our future studies since we are
rying to develop a new method to enhance the classification accu-
acy as well as to implement a multi-class BCI paradigm. In the
resent study, we have demonstrated only a single on-line test
xperiment; however, our future studies mentioned above would
e fully based on online experiments. We are currently planning to
pply our system to patients with ALS or CLIS.
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