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Abstract: Recent studies on multimodal brain source imaging have shown that the use of functional MRI
(fMRI) prior information could enhance spatial resolution of magnetoencephalography (MEG), while
MEG could compensate poor temporal resolution of fMRI. This article deals with a multimodal imaging
method, which combines fMRI and MEG for enhancing both spatial and temporal resolutions. Recent
studies on the combination of fMRI and MEG have suggested that the fMRI prior information could be
very easily implemented by just giving different weighting factors to the diagonal terms of source
covariance matrix in linear inverse operator. We applied the fMRI constrained imaging method to several
simulation data and experimental data (Japanese language lexical judgment experiment), and found that
some MEG sources may be eliminated by the introduction of the fMRI weighting and the eliminated
sources may affect source estimation in fMRI activation regions. In this article, in order to check whether
the eliminated sources were fMRI invisible ones or just spurious ones, we placed small numbers of
regional sources (rotating dipoles) around all possible activation regions and investigated their temporal
changes. By investigating the results carefully, we could evaluate whether the missed sources were real
or not. Hum Brain Mapp 26:110–118, 2005. © 2005 Wiley-Liss, Inc.

Key words: fMRI; MEG; brain; human; linear estimation; fMRI invisible source; multimodal brain source
imaging; weighted minimum norm

� �

INTRODUCTION

Recently, numerous studies have focused on the multimo-
dal data fusion for combining different imaging methods,
especially hemodynamic-based brain imaging methods such
as positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI) with electromagnetic-based
techniques such as electroencephalography (EEG) and mag-
netoencephalography (MEG). PET and fMRI have spatial

resolutions as high as 2 mm; however, temporal resolutions
are highly limited, from several seconds to several minutes.
On the contrary, EEG and MEG have superior temporal
resolutions when compared to PET or fMRI, allowing stud-
ies of the dynamics of neural networks that occur at typical
time scales on the order of tens of milliseconds. Unfortu-
nately, the spatial resolutions of MEG and EEG do not match
those of PET and fMRI due to their limited numbers of
spatial measurements and ambiguity of electromagnetic in-
verse problem. Therefore, effective combinations of different
modalities will provide new insight that could not be
achieved with either modality alone.

Horwitz and Poeppel [2002] classified several approaches
to the multimodal data fusion into three categories: converg-
ing evidence, direct data fusion, and computational neural mod-
eling. The converging evidence is not an actual data fusion,
but just comparisons between different modalities. For ex-
ample, results from other analyses that support one’s find-
ings are brought forth in the discussion section of an article.
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In the case of the direct data fusion, two datasets are directly
combined using different mathematical and/or statistical
algorithms. This is the most common and actively studied
one among the three categories. The aim of computational
neural modeling is to construct a large-scale biologically
realistic neural network model that can simulate both hemo-
dynamic and electromagnetic data. This approach sounds
promising but no model yet exists that can fully simulate
both types of data. This paper will deal with the second
one—direct data fusion, especially the combination of fMRI
and MEG data.

The approaches for combining fMRI results with MEG
measurement are classified into two categories: one is the
equivalent current dipole (ECD) model and the other is a
(cortically constrained) distributed source model.

The ECD model is the most common approach to the
multimodal data fusion. The model assumes a relatively
small number of focal dipole sources, of which initial posi-
tions are placed in fMRI activation foci [Scherg, 1992; Ahl-
fors et al., 1999; Korvenoja et al., 1999]. The locations of the
current dipoles are then adjusted using nonlinear fitting
algorithms such as the Levenberg-Marquardt algorithm
(LMA), Nelder-Meade downhill simplex searches, simu-
lated annealing (SA), and so on. The orientations and
strengths of the ECDs are determined using a least-square
algorithm. This simple combination of multimodal data can
solve conventional problems of the ECD model when the
number and initial locations of the ECDs cannot be esti-
mated a priori. However, this approach still has potential
problems. If single dipoles are placed at each focus of fMRI
activation, the discrete dipoles cannot properly represent the
large spatial extent of some activations. Hence, artificial
partitioning of these extended activation regions into dis-
crete foci is required [Fujimaki et al., 2002]. Furthermore,
when applying this approach, we should consider the effect
of “crosstalk,” which represents the influence of other di-
poles to a dipole nearest to an actual source [Liu et al., 1998;
Fujimaki et al., 2002]. From their simulation studies, we
could see that constraining multiple dipole sources in all the
possible fMRI activation foci might yield considerable error
if some of the ECD locations were not correctly estimated.

Contrary to the ECD model, the distributed source model
assumes many current dipoles scattered in source spaces
and the orientations and strengths of the dipoles are deter-
mined using linear (L2 norm) or nonlinear (L1 norm) esti-
mation methods [Hämäläinen and Ilmoniemi, 1984; Fuchs et
al., 1999]. Based on the basic idea, Dale and Sereno [1993]
first proposed constraining the source space into anatomi-
cally known locations (interface between white and gray
matter of the cerebral cortex extracted from MRI) and ori-
entations (perpendicular to the cortical surface), and weight-
ing the estimate based on a priori information. Most of
recent studies on the distributed source reconstruction have
adopted the anatomical constraints to reduce the dimension
of the source space [Kincses et al., 1999; Baillet et al., 2001; Im
et al., 2003]. It is usually believed that the distributed source
approaches can be very readily incorporated with fMRI data

and is more biologically plausible than the ECD model. The
most straightforward way to impose the fMRI constraint on
the distributed source reconstruction is to restrict the source
spaces at locations exceeding a threshold predetermined for
fMRI statistical parametric mapping (SPM) [George et al.,
1995]. However, according to Liu et al.’s study [1998], this
approach is very sensitive to some generators of MEG or
EEG signals that are not detected by fMRI, which has usu-
ally been referred to as fMRI invisible sources. Liu et al.
[1998] revealed that the distortion by the fMRI invisible
sources could be reduced considerably by just giving a
constant weighting factor to the diagonal terms of source
covariance matrix in linear Wiener estimate operator. They
also suggested that the optimal fMRI weighting for the
nonactivation regions should be 10% of the maximum value,
in order to minimize the distortion due to both fMRI invis-
ible and visible sources. Using the fMRI constrained MEG/
EEG method, one could get spatially focalized source distri-
bution as well as temporal changes of the sources that could
not be obtained from fMRI results [Liu et al., 1998; Bonmas-
sar et al., 2001].

The fMRI constrained distributed source reconstruction
provided a very promising way to integrate different mo-
dalities. However, we found from several simulations that
the fMRI activation regions were still very sensitive to the
existence of some significant fMRI invisible sources. Fuji-
maki et al. [2002] insisted that the fMRI invisible sources
should be taken into account. They considered the fMRI
invisible sources by placing dipole positions from selective
minimum-norm solution [Matsuura and Okabe, 1995] as
well as those obtained from fMRI. However, in general the
distributed source approaches suffer from unwanted spuri-
ous (or phantom) sources due to the highly underdeter-
mined relationship between the number of unknowns (point
sources defined on tessellated cortical surface; over several
thousands) and that of measured data (less than a few
hundreds). Therefore, we have to check whether the missed
source areas are real MEG/EEG generators or just spurious
sources.

In this article we first compare distributed sources ob-
tained from two different methods: MEG source reconstruc-
tions with and without fMRI constraint. Then, if the differ-
ence between two results were distinguished, we placed
small numbers of regional sources (rotating dipoles) around
all possible source locations and investigated their temporal
changes based on a least-square estimate in order to check
whether the eliminated sources were fMRI invisible ones or
just spurious ones. The proposed procedure was applied to
simulated and experimental data, and proved to be a prom-
ising method to find neuronal activities that could not be
detected by conventional fMRI constrained MEG or fMRI-
alone analyses.

INVERSE SOLUTION

We used a linear estimation approach [Dale and Sereno,
1993; Liu et al., 1998, 2002] to reconstruct extended brain
electrical sources. The expression for the inverse operator W is:
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W � RAT�ARAT � C� � 1 (1)

where A is the lead field matrix that relates point sources to
sensors, R is a source covariance matrix, and C is a noise
covariance matrix. The source distribution can be estimated
by multiplying the measured signal at a specific instant by
W. If we assume that both R and C are scalar multiples of
identity matrix, this approach becomes identical to mini-
mum norm estimation [Liu et al., 2002]. In our study, we
assumed the source covariance matrix R to be a diagonal
matrix, which means that we ignored relationships between
neighboring sources. The noise covariance matrix C was also
set to be a diagonal matrix under the assumption that com-
mon noise components were eliminated during signal pro-
cessing. Liu et al. [1998] suggested that fMRI prior activa-
tions could be easily incorporated with the linear estimation
process by just giving different values to the diagonal ele-
ments of R. They revealed using Monte Carlo simulations
that 0% (1 for diagonal elements of R) and 90% (0.1 for
diagonal elements of R) fMRI weightings should be given to
sources inside and outside of the fMRI activation regions,
respectively, in order to minimize distortion of source patterns
stemming from both fMRI visible and invisible sources.

SIMULATION STUDY USING
FORWARD DATA

Simulation Set-Ups and Results

We first applied the inverse technique introduced in the
previous section to artificially constructed forward data. We
assumed realistic conditions obtained from a practical mea-
surement that will be used again in the next section. The
sensor layout used for the simulation was a 148-channel
whole-head MEG system (Magnes 2500 WH; Biomagnetic
Technologies, San Diego, CA). Figure 1a shows the sensor
configuration and head positions obtained using a 3-D digi-
tizer. To utilize anatomical information, the interface be-
tween white and gray matter was extracted from MRI T1
images (256 � 256 � 200, voxel size for each direction: 1 mm)
and tessellated into about 500,000 triangular elements includ-
ing about 250,000 vertices. To extract and tessellate the cortical
surface, we applied “BrainSuite,” developed at the University
of Southern California [Shattuck and Leahy, 2002].

In this article, the boundary element method (BEM) was
applied for the forward calculation of magnetic field. It has
been frequently reported that just considering the inner
skull boundary is sufficient for the MEG forward calcula-
tions [Meijs et al., 1988; Hämäläinen and Sarvas, 1989]. The
boundary surface used for the BEM was generated by com-
mercial source analysis software (ASA v. 2.1; ANT Software)
and was composed of 1,016 elements and 510 nodes. Figure
1b demonstrates the tessellated cortical surface and the
boundary element meshes.

Figure 2a shows assumed fMRI activation regions ob-
tained from a practical measurement. For the forward cal-
culation, we placed three dipoles: two inside of the fMRI

Figure 1.
a: Sensor configuration of a 148-channel whole head MEG system
and head positions obtained from a 3-D digitizer. b: Anatomical
data used for forward/inverse calculations - tessellated cortical
surface and boundary element meshes (inner skull boundary).
Note that the cortical surface was not included in the boundary
element analysis. The cortical surface tessellation was used only
for locating dipolar sources.
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activation areas and the other outside of them. Figure 2b
represents the locations of the three sources. The source
intensity patterns I of three dipoles with respect to time t
were defined as follows:

Source 1:
I � – 0.6 � 10-4 (t – 100)2 � 0.6 (0 ms � t � 200 ms)

� – 10-4 (t – 300)2 � 1 (200 ms � t � 400 ms)
� 0 (400 ms � t � 500 ms)

Source 2:
I � 0 (0 ms � t � 100 ms)

� – 0.25 � 10-4 (t – 300)2 � 1 (100 ms � t � 500 ms).

Source 3:
I � – 0.6 � 10-4 (t – 100)2 � 0.6 (0 ms � t � 200 ms)

� 0 (200 ms � t � 500 ms)

After the forward calculation of magnetic field assuming a
670 Hz sampling rate, we added real brain noise, which was
obtained from a prestimulus period of a practical experi-
ment. The original signal without noise was scaled in order
for the signal-to-noise ratio to be �10. Figure 2c shows the
finally constructed signal patterns for 148 channels with
respect to simulated time.

Then we reconstructed source distributions at times of 100
ms and 300 ms using two different conditions—with and
without fMRI a priori information.1 For imposing an ana-
tomical constraint, the tessellated cortical surface was sam-
pled to be about 10,000 dipole locations. In the simulation,
we did not constrain the orientations of dipoles considering
geometrical modeling error.2 Note that sources 1 and 3 were
activated around 100 ms, while 1 and 2 were activated
around 300 ms. Figure 3 shows the resultant source distri-
butions at 100 ms when two assumed sources were located
inside the fMRI activating areas. Throughout this article,
noise normalized current dipole power (sum of squared

1Here we will refer to the two cases as fMRI constraint case and
MEG-alone case, respectively.
2The geometrical modeling error represents that some cortical areas
were not properly segmented. The segmented cortical surface used
here had the same problem. Especially, the sulci-gyri structures
around occipital lobe were not properly segmented because of
inhomogeneity of MRI images and other technical problems. That is
why we did not constrain source orientations.

Figure 2.
a: Assumed fMRI activation regions obtained from a practical
measurement. b: Locations of three sources assumed to simulate
realistic MEG signal. c: Simulated MEG signals. Real brain noise
(SNR � 10) was added to each sensor. Three figures below the
main signal represent source patterns.

Figure 3.
Normalized current dipole power at 100 ms (white, highest value;
dark, lowest value): (a) without fMRI constraint, (b) with fMRI
constraint. We can see that the distribution is more focalized by
the introduction of fMRI constraint.
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dipole component strengths) was used for visualization pur-
poses [Dale et al., 2000]. It can be seen from the figures that
the reconstructed source distribution was further focalized
by applying the fMRI constraint, which coincides well with
results of a previous study [Bonmassar et al., 2001].

On the contrary, significantly different results were ob-
tained when we applied the same procedures to data ob-
tained at 300 ms when one source was located inside the
fMRI activation areas but the other was not. Figure 4 shows
the source distributions reconstructed at 300 ms. For the
MEG-alone case, the source distribution was somewhat
widespread, but positions with highest source power coin-
cide well with those of assumed dipole sources. However,
when the fMRI constrained inverse procedure was applied,
it can be easily seen that source 2 was nearly eliminated.
Instead, nearby fMRI areas were activated to similarly
mimic magnetic field distribution. This shows that the capa-
bility of reconstructing MEG sources may be degraded by
the introduction of an fMRI constraint, especially when sig-
nificant fMRI invisible sources exist.

In order to check the dependency of reconstructed results
on the relative fMRI weighting values for fMRI inactivated
areas, we varied them between 0.1, 0.3, 0.6, and 1. Figure 5
shows the changes of source distribution at 300 ms with
respect to the weighting values. It can be seen from the
figures that source 2 is diminished gradually according to
the decrement of the relative fMRI weighting. From several
simulations, including the above, we could not find any
absolutely compromising value that can completely reduce

distortions from the fMRI invisible sources nor prevent the
fMRI invisible ones from being eliminated.

Consideration of fMRI Invisible Sources

It was shown from previous simulations that some signif-
icant MEG sources that had not been detected by fMRI could
be eliminated by the introduction of an fMRI constraint. In
this study, we suggest that both MEG-alone and fMRI con-
straint cases should be applied simultaneously for each time
in consideration. Then, if the difference between two source
distributions are distinguished and some sources in MEG-
alone case are eliminated by the introduction of the fMRI
constraint,3 we should assess whether the missed sources
are fMRI invisible ones or MEG spurious ones. In our study,
for the assessment, we placed some rotating dipoles around
possible activating areas. To place the dipoles, we applied
the following processes:

1) We first searched local peaks by scanning all vertices
on a cortical surface. The local peak is defined as a
vertex that has larger current strength than all its
neighboring vertices.

2) Some local peaks whose current strengths exceeded a
predetermined threshold were selected as candidates
for the dipole placement. The threshold was deter-
mined based on a noisy source-to-real source ratio,
which will be introduced in next section.

3) A local peak that has largest value was selected among
the candidates. Some local peaks that are close to the
selected one were excluded from the candidate set. The
critical distance to discriminate sources was deter-
mined using a statistical method. Fujimaki et al. [2002]
performed numerous simulations for the same sensor
configuration as in this study, and selected 40 mm as
the separation threshold, because the probability of
finding dipole pairs with high crosstalk (over 50%)

3If the difference between two distributions is distinguished very
clearly, one can recognize it intuitively. However, in practical cases,
a quantitative measure should be introduced because the difference
is not always clear. Here, we compared peak positions of two
distributions. Processes to find the peak positions (positions of
regional sources) are described in the following. If the distance
between peak positions did not exceed 40 mm, the two sources were
regarded as same source. Please refer to the following processes.

Figure 4.
Normalized current dipole power at 300 ms (white, highest value;
dark, lowest value): (a) without fMRI constraint, (b) with fMRI
constraint. Source 2 outside the fMRI area was eliminated by the
introduction of fMRI constraint.

Figure 5.
Changes of source distribution at 300 ms with respect to relative
fMRI weightings. R represents relative weighting value for fMRI
nonactivated regions.
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decreases to as low as 5.6% at that distance. In this
study, the same separation threshold was applied to
place the rotating dipoles.

4) Then process (3) was repeated until no candidates were
left. These processes were applied to both MEG-alone
case and fMRI constraint case. If the distances among
dipoles are less than the separation threshold, we se-
lected dipoles from MEG-alone case.

Then, temporal changes of the dipoles’ moment vectors
were estimated using truncated singular value decomposi-
tion (tSVD), which allows the solutions to satisfy a condition
of least squares for errors in magnetic fields. If the magni-
tude of an estimated dipole moment has a smaller value
than a noise level, we judged that the distributed sources
around the dipole have high probability to be spurious
sources. Such an assessment using small numbers of dipoles
is thought reasonable because such estimations have a much
smaller probability to generate spurious solutions compared
to the distributed source models that use large numbers of
dipoles simultaneously.

To check this property, we placed four dipoles at probable
activation regions, as shown in Figure 6a. Figure 6b shows
the temporal changes of the testing dipoles around 300 ms,
where the missed source 2 shows significant dipole moment
intensity. Therefore, it has large probability to be an fMRI
invisible source, not just a spurious source. In this way, we

can assess whether the sources missed during fMRI con-
strained inverse processes are meaningful ones or ignorable
ones.

Application to a Japanese Language Lexical
Judgment Test

A problem considered in this study was a Japanese lan-
guage lexical judgment test [Fujimaki et al., 1999]. Several
strings of three characters were visually presented to a sub-
ject (a right-handed Japanese). The set of strings was com-
posed of Japanese katakana strings (meaningful nouns) and
meaningless pseudo-character strings. The subject answered
whether the strings were meaningful or not by pressing one
of two buttons with his left index and middle fingers. The
visual stimuli were presented below a square (a fixation
mark) every 2 s with a duration of 1 s. Luminance was 15
cd/m2 for the stimulus and 0.5 cd/m2 for the background,
and the visual angle was 1.3° for one character and 0.3° for
the fixation mark. A 1.5 T fMRI system (Magnetom Vision,
Siemens, Erlangen, Germany) using an echo planar imaging
method with parameters TR 12.65 s, TE 66 ms, pixels 2.2
� 2.2 mm, slice thickness 7 mm, and slice gaps 2.8 mm. The
fMRI data were analyzed using imaging processing software
(SPM99); they were preprocessed by motion correction and
co-registered to the subject’s T1 structural image. For the
control condition of fMRI, the subject was visually presented
with single pseudo-characters or just a fixation mark, and
answered whether the characters were presented or not,
which was a visual form process requiring a smaller load
than the test condition.

For the MEG experiment, we applied the same conditions
as the fMRI case. A 148-channel whole head system was
used to record the magnetic field, which was already pre-
sented in the previous forward simulations. The data were
averaged over 200 epochs (pre-trigger period: 500 ms, post-
trigger period: 1,200 ms) and were filtered with a bandpass
of 0.3 to 40 Hz. Figure 7a shows the measured MEG wave-
form.

For the MEG signal analysis, we applied the boundary
element method (BEM) for forward calculation and tessel-
lated cortical surface for inverse reconstruction, as in the
previous simulations (Fig. 1a,b). To apply the fMRI con-
strained MEG inverse process, we first projected fMRI acti-
vation regions into the tessellated cortical surface. Figure 7b
shows the result of fMRI statistical parametric mapping
(SPM). Figure 7c depicts the fMRI activation regions coreg-
istered with the tessellated cortical surface.

Considering temporal changes of magnetic field distribu-
tion on a sensor plane, we reconstructed MEG source dis-
tributions at 80 and 140 ms. This article will not deal with or
discuss the meanings of reconstructed results and will show
just the difference between MEG-alone and fMRI constraint
cases because this topic has not been fully discussed yet.
However, it is expected that visual form neural activations
will occur around 80 ms and left-hemisphere dominance
will be observed around 140 ms, as in other visual and
phonological experiments studied before [Fujimaki et al.,

Figure 6.
a: Placement of four rotating dipoles to check whether missed
source 2 is an fMRI invisible source or just a spurious one. b:
Temporal changes of source intensities for the four rotating di-
poles.
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2002]. Figure 8a shows the magnetic field map on a sensor
plane and reconstructed source distributions4 with and
without fMRI constraint at 80 ms. We can see from the
results that earliest visual activations were observed as ex-
pected, and the extended sources were focalized more by the
introduction of the fMRI constraint. Figure 8b also shows the
magnetic field map and source distributions at 140 ms. We

could observe that MEG extended sources inside fMRI acti-
vation regions were focalized by the introduction of the
fMRI constraint, but some MEG sources outside the regions
were eliminated as in the previous simulation studies.
Therefore, we placed some regional sources around possible
activation regions. Eight rotating dipoles were placed as
shown in Figure 9a and their temporal changes were inves-
tigated using tSVD between 120 and 160 ms. Figure 9b
shows the normalized dipole intensities with respect to time.

Since the magnitudes of measured signals did not neces-
sarily coincide with estimated source intensities,5 we esti-
mated a noisy source-to-real source ratio in order to assess
significance of a regional source. First, we selected several
points of time in a noise window, reconstructed source
distributions using anatomical constraints, and checked
their maximum magnitudes. Then, we applied the same
processes to a signal window. By comparing magnitudes of
noisy and real sources, we found that the noisy source
intensity did not exceed 15% of maximum (real) source
intensity, which appears around 140 ms. The estimated ratio
was used to check whether the eliminated sources were real
MEG generators or just spurious sources.

From Figure 9b, we could see the following:
• Regional sources 1, 2, 5, and 6 were located around

missed activations. Dipole intensities of 1 and 2 were
large, while those of 5 and 6 were smaller than the noisy
source level defined above.

• Other dipoles (3, 4, 7, and 8), which were located inside
fMRI activation regions, also showed relatively signifi-
cant levels at 140 ms, compared to the noisy source
level.

• Hence, we could conclude that the missed sources 1 and
2 have larger probability to be fMRI invisible sources,
but 5 and 6 may be spurious sources, which were gen-
erated during MEG inverse processes.

Inspiringly, the finally estimated dipole locations coincide
well with the previous study on a phonological judgment
test [Fujimaki et al., 2002].

CONCLUSIONS

In this article fMRI constrained MEG source reconstruc-
tion was implemented and applied to simulation and exper-
iment studies. From the results, we found that the conven-
tional technique to impose fMRI constraint using “a
diagonal weighting” could miss some significant fMRI in-
visible MEG sources and some distortions stemming from
the missed sources were unavoidable even when the value
of the diagonal weighting was adjusted.

If no fMRI invisible sources exist, i.e., the fMRI activation
regions can cover every MEG generator, the MEG source
distribution could be focalized by fMRI constraint. More-
over, the use of fMRI prior information could eliminate

4All the conditions used for the calculations were exactly the same
as those of the previous forward simulations, such as fMRI con-
straints, anatomical constraints, sensor positions, and BEM meshes.
Pre-stimulus time (–500–0 ms) was regards as noise window, which
was used to construct noise covariance matrix C.

5For example, the maximum value of a measured signal appeared
around 360 ms, but that of a reconstructed source appeared around
140 ms.

Figure 7.
a: MEG waveform measured with 148-channel magnetometers
from one subject. Over 200 epochs of data were averaged and
filtered with a bandpass of 0.3 to 40 Hz. b: Result of fMRI SPM
analysis. c: fMRI activation regions coregistered with a tessellated
cortical surface.
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spurious sources generated due to an ill-posed MEG inverse
problem and the MEG analysis could provide temporal
information for the fMRI results. However, these merits may
become useless when there are significant MEG generators
that are not included in fMRI activations. In this article we
suggested that one should simulate both MEG-alone case as
well as fMRI constraint case and should compare the two
results. If the difference is distinguished and some sources
are eliminated by the introduction of fMRI constraint, small
numbers of regional sources were placed around all possible
candidate positions and their temporal changes were inves-
tigated. If the magnitude of a dipole vector exceeds a noisy
level, it has large probability to be an fMRI invisible source;
if not, it may be a spurious source that usually stems from
the ill-posed characteristic of typical MEG inverse problems.

We can summarize possible cases as follows:

1) Peak positions from an fMRI constraint case and those
from a MEG-alone case are identical: In this case, one
can trust results from fMRI constrained MEG analysis.

2) Peak positions from an fMRI constraint case and those
from a MEG-alone case are not identical and some
MEG sources are eliminated by the fMRI constraint.
After the regional source test, all the missing sources
are proved to be MEG spurious sources: One can trust
results from fMRI constrained MEG analysis as well.

3) Peak positions from an fMRI constraint case and those
from a MEG-alone case are not identical and some
MEG sources are eliminated by the fMRI constraint.
After the regional source test, some of the missing
dipoles have significant dipole moments: One cannot
fully trust results from fMRI constrained MEG analy-
sis. In this case, one can use the results of a regional
dipole test to estimate real source locations.

We expect that this method can be a very promising method
to find neuronal activities that could not be detected by
conventional fMRI constrained MEG or fMRI-alone analy-
ses. Further studies should be continued to develop new
techniques to consider fMRI invisible sources as well as to
take full advantage of fMRI a priori information.

Figure 8.
Magnetic field map and MEG source distributions with and without
fMRI constraint (lower figures): (a) at 80 ms; (b) 140 ms. View-
points are the same as those in Figure 7c.

Figure 9.
a: Locations of regional sources to check temporal changes of
possible activations. b: Temporal changes of regional dipoles with
respect to time.
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