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ABSTRACT Recent developments of social virtual reality (VR) services using avatars have increased the
need for facial expression recognition (FER) technology. FER systems are generally implemented using opti-
cal cameras; however, the performance of these systems can be limitedwhen users are wearing head-mounted
displays (HMDs) as users’ faces are largely covered by the HMDs. Facial electromyograms (fEMGs) that can
be recorded around users’ eyes can be potentially used for implementing FER systems for VR applications.
However, this technology lacks practicality owing to the need for large-scale training datasets; furthermore,
it is hampered by a relatively low performance. In this study, we proposed an fEMG-based FER system based
on the Riemannian manifold-based approach to reduce the number of training datasets needed and enhance
FER performance. Our experiments with 42 participants showed an average classification accuracy as high
as 85.01% for recognizing 11 facial expressions with only a single training dataset for each expression.
We further developed an online FER system that could animate a virtual avatar’s expression reflecting a
user’s facial expression in real time, thus demonstrating that our FER system can be potentially used for
practical interactive VR applications, such as social VR networks, smart education, and virtual training.

INDEX TERMS Facial expression recognition, facial electromyography, riemannian manifolds,
human-machine interface, virtual reality.

I. INTRODUCTION
With rapid developments in virtual reality (VR) technologies,
there is an increasing interest in social network VR applica-
tions using human or human-like avatars [1]–[4]. For exam-
ple, Facebook recently released a new VR social network
application called Facebook Space [5] and started to evolve
their mobile-based social network service (SNS) platform
into a VR-based SNS. In addition, various VR applications,
such as Vtime, VRchat, AltSpaceVR, and High Fidelity
VR have been released into the market to keep pace with
rapidly changing social interaction environments [6], [7].

To allow users a more immersive experience during
VR-based social interaction, it is important to precisely
recognize their facial expressions and visualize them on
an avatar in VR. Facial expression recognition (FER) has
been studied widely using optical cameras in the field of
computer vision [8]–[13]. In camera-based FER systems,
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multiple facial components, such as eyes, nose, cheeks,
mouth, eyebrows, ears, and forehead, need to be detected
from a camera image to recognize a user’s facial expres-
sions [13]. However, these systems cannot effectively detect
facial expressions when a user wears a head-mounted dis-
play (HMD) as a large portion of the face is covered by the
HMD. For example, Olszewsk et al. [14] attached an RGB
camera onto an HMD and continuously captured images of a
user’s lips to estimate the user’s facial expressions. Similarly,
Burgos-Artizzu et al. [15] used a webcam placed at a distance
from users to recognize their facial expressions when wearing
HMDs. These camera-based systems could precisely detect
changes in the users’ facial expressions around the lips;
however, they failed to estimate motions related to other parts
of the face that were covered by the HMD, such as eyes and
eyebrows.

To tackle this issue, infrared cameras were attached on
the inner side of HMDs to track user’s eye and eyebrow
movement [16], [17]. To implement this system, at least three
wide angle cameras are needed, which not only makes the
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TABLE 1. Studies on facial expression recognition based on fEMG.

system expensive but also increases the total amount of data
to be analyzed and transmitted. Furthermore, Li et al. [18]
estimated muscular movement around the eyes using strain
recorded from eight thin film strain gage sensors attached to
an HMD; however, the use of thin and flexible strain sensors
also increases the total cost of the system [19]. Moreover,
an additional camera is still needed to capture muscular
movements around the lips.

Recently, an FER system estimating facial expressions
using facial electromyograms (fEMGs) recorded from elec-
trodes attached to an HMD is being developed [20], [21];
however, its performance has not yet been publicized. This
system seems promising because fEMG-based FER systems
can be implemented at a much lower cost than camera- and
strain-based FER systems. Table 1 lists a series of repre-
sentative studies on fEMG-based FER [22]–[27]. Note that
the studies listed in Table 1 determined electrode positions
without considering potential VR applications and thus elec-
trode locations were scattered all over the face. Moreover,
the FER studies referred to in Table 1might not be appropriate
for practical social VR applications owing to the following
limitations. Firstly, large training datasets were required to
achieve a fairly high accuracy in classifying discrete facial
expressions. For example, a recent study [26] required 14 tri-
als to register just a single expression, which implies that

the users of this particular system have to go through long
and tedious calibration sessions (14 × 5 = 70 repeated
trials in this study) to recognize just five facial expressions.
In the FER studies listed in Table 1, the least number of trials
required to register a single expression was four [24], [25],
which is still too large for use in practical VR applications.
We think that in practical scenarios, an FER system should
show a high classification performance after only a single reg-
istration of a user’s facial expressions. Moreover, previously
reported fEMG-based FER systems were not validated with
many participants. The maximum number of participants in
previous studies was just ten [24], [25]. Lastly, to the best of
our knowledge, online fEMG-based FER systems have never
been reported.

The main aim of the present study is to implement a
new fEMG-based FER system to address the limitations of
conventional methods; the new system does not require a
large training dataset but yields high classification perfor-
mance. To this end, a Riemannian manifold-based classi-
fier [28]–[30] was employed for the first time in the field of
myoelectric interfaces. The performance of the implemented
FER system was compared with that of conventional systems
with a large number of participants (N = 42), in terms of
recognition accuracy and information transfer rate (ITR) [31],
when only a single training trial was used to build a classifier.
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We further implemented an online FER system, in which a
virtual avatar mimicked a user’s facial expressions in real
time.

II. EXPERIMENT ENVIRONMENT
A. DETERMINATION OF ELECTRODE CONFIGURATION
Firstly, we fabricated a transparent plastic film identical in
shape and size to an actual HMD face pad sold in the
market (hereafter we call this plastic film an ‘HMD pad’).
Nineteen sticker electrodes were attached to the plastic film;
the electrodes were densely arranged as shown in the left
part of Fig. 1. Such HMD pads were attached to the faces of
three male adults, who were asked to freely move their facial
muscles. In this preliminary test, it was observed that elec-
trodes above specific facial muscles, such as the temporalis
and corrugator, detached frequently from the skin. Therefore,
we decided to exclude nine electrodes within the shaded
rectangles in the left part of Fig. 1 from the list of electrode
candidates. Eventually, fEMG data were recorded using ten
electrodes as shown in Fig. 1. As the maximum number of
channels supported by widely used commercial analog front
ends for biomedical signal acquisition (e.g., ADS1298, Texas
InstrumentsTM) is eight, we decided to select eight electrodes
from the ten electrodes. We evaluated the performance of
three different electrode configurations with eight electrodes
shown in Fig. 2, in terms of recognition accuracy. After deter-
mining the optimal electrode configuration, further analyses
including real-time FER were conducted using the fEMG
data acquired from the optimal eight electrodes.

FIGURE 1. HMD pad for recording fEMGs and a user wearing an HMD pad
with ten electrodes. Nine electrodes within the shaded rectangles were
excluded in this study.

FIGURE 2. Three candidate electrode configurations for recording facial
EMG.

B. PICTURES OF EMOTIONAL FACES
Anger, fear, happiness, neutrality, sadness, and surprise were
sourced from the Radboud database [32], which contains a
facial picture set of 67 models displaying emotional expres-
sions based on a facial action coding system (FACS). The
six selected pictures are presented in the first row of Fig. 3.

FIGURE 3. Eleven facial expression picture stimuli and the experimental
procedure of performing a facial expression.

We selected the Radboud database as the facial pictures
provided by the Radboud database were relatively easier to
be used as reference pictures than those provided by other
databased such as SEWA [33] and BP4D+ [34]. Five pictures
of the first author’s face displaying different expressions
including clenching, half smile (left and right), frown, and
kiss were additionally used as reference pictures (see the sec-
ond row in Fig. 3). In total, 11 pictures were employed as
the reference facial expressions that the study participants
mimicked during experiments.

C. PARTICIPANTS
Forty-two participants (17 males and 25 females) volun-
teered to participate in our study (age: 24.07 ± 1.89 years
ranging from 21 to 29 years), and all the participants were
native Korean. None of the participants reported any seri-
ous health problems, such as Bell’s palsy, stroke, or Parkin-
son’s disease, that might affect the study. Before conducting
the experiments, all the participants were given a detailed
explanation of the experimental protocols and in addition,
they signed a written consent. The participants received
monetary compensation for their participation in the exper-
iments. The study protocol was approved by the Institutional
Review Board (IRB) of Hanyang University, South Korea
(IRB No. HYI-14-167-11).

D. EXPERIMENTAL PROCEDURE
fEMG data were acquired using HMD pads with ten elec-
trodes (see Fig. 1). We used a commercial biosignal record-
ing system (Active Two; Biosemi B.V., Amsterdam, The
Netherlands) and the sampling rate was set at 2,048 Hz. Each
electrode was referenced and grounded by a common mode
sense (CMS) electrode and a driven right leg (DRL) electrode
attached at the left and right mastoids, respectively.

Before conducting the experiment, the participants were
allowed a short training period to familiarize themselves
with the 11 selected facial expressions as shown in Fig. 3.
Reference facial pictures were presented on a computer
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monitor using E-prime 2.0 (Psychology Software Tools,
Sharpsburg, PA, USA), which also recorded the time points
at which the facial pictures were presented.

To construct a database, each participant was asked tomake
11 designated facial expressions repeatedly for 20 times.
Fig. 3 shows the experimental procedure of a single trial.
First, a facial expression that a participant needs tomake (e.g.,
happy expression in Fig. 3) is presented on the monitor. The
participant is asked to press the space barwhen he/she is ready
to move on to the next step. After the participant presses the
space bar, a short beep sound is heard, at which time he/she
needs to start mimicking the emotional face presented on the
monitor for three seconds. Subsequently, the participant can
make a neutral expression before the next designated facial
expression is presented.

Pictures with different facial expressions were randomly
presented. Each participant underwent a total of 220 trials
(11 facial expressions × 20 repetitions). This dataset was
uploaded to Figshare and is now freely available at https://
figshare.com/s/c2866bb4285af6d8b612.

III. CONVENTIONAL APPROACH
Typical pattern-recognition-based myoelectric interfaces,
such as multifunction prosthesis, include a series of pro-
cesses consisting of preprocessing, data segmentation, fea-
ture extraction, and classification, each of which has been
well established [35]–[41]. We implemented an fEMG-based
FER system using conventional methods widely used in pat-
tern recognition-based myoelectric interfaces. All the analy-
ses were conducted using Matlab 2018b (MathWorks, Inc.,
Natick, MA, USA).

A. PREPROCESSING
Traditionally, raw EMG signals are acquired in a bipolar
configuration, which is known to alleviatemovement artifacts
and noises from stray potentials [42]. As each of the three
different electrode configurations we tested (Fig. 2) contain
eight electrodes, four electrode pairs were selected to acquire
bipolar EMG signals. Two neighboring electrodes constituted
a single channel, resulting in four electrode pairs – (1) two
electrodes on the left forehead, (2) two electrodes on the
right forehead, (3) two electrodes on the left cheekbone, and
(4) two electrodes on the right cheekbone. Later, the raw
fEMG signal was notch-filtered at 60 Hz to eliminate AC
noise and band-pass filtered using a 4th order Butterworth
filter with cutoff frequencies of 20 and 450 Hz.

B. DATA SEGMENTATION
Filtered fEMG signals were segmented into a series of short
segments using a sliding window. To determine an optimal
sliding window length, various window lengths (from 50 ms
to 1,500 ms with a step size of 50 ms, i.e., 50, 100, . . . , 1,450,
1,500) were tested. The sliding window was slid from 0 ms
to the end of the signal with a fixed time interval of 50 ms,
which implies that the facial expression of a participant was
recognized at every 50 ms.

Later, only those segments of the fEMG signals acquired
while a participant was making a designated facial expression
were selected. To exclude fEMG signals recorded during tran-
sition intervals, segments including the first 1 second signal
were not selected. The average fEMG onset time evaluated
using a simple thresholding method was 1.02±0.34 seconds.
To evaluate the fEMG onset time, the average RMS value of
fEMG signals in the time interval of 2 – 3 s after the beep
sound was set as the threshold value for each trial. Then,
the RMS values at every time point in a trial were compared
with the threshold value, and the first time point at which
the RMS value exceeded the threshold value was determined
as the fEMG onset time of the trial. Indeed, it has been
reported that the use of transient EMG signals could degrade
the performance of myoelectric interfaces [35], [39].

C. FEATURE EXTRACTION
Root-mean-square (RMS), wavelength (WL), sample entropy
(SE), and cepstral coefficient (CC) were used as the features
for the pattern classification. We selected these features as
they showed the best performance in myoelectric pattern
recognition studies [39]. Indeed, the combination of all four
features not only showed the highest averaged classification
accuracy but also exhibited robustness with respect to differ-
ent segment lengths [39].

The equations to compute the features are presented
in Table 2. The numbers of RMS, WL, SE, and CC features
were 4, 4, 4, and 16 (= 4 × 4), respectively, as there were
four bipolar fEMG channels. Therefore, the total number of
features was 28, which constitute the feature vector denoted
by FVw(f , t).

D. CLASSIFICATION
As the main aim of our study was to develop a minimum
training fEMG interface, only one trial among 20 trials was
selected and used to train the linear discriminant analy-
sis (LDA) classifier [35], [36]. The first trials for each of the
11 facial expressions were used as the training dataset and the
remaining 19 trials were used as the test dataset to evaluate
the performance of our FER system. Note that we did not
exclude any samples in the original dataset. The accuracy for
each facial expression was defined as the number of correctly
classified segments divided by the total number of samples.
The accuracy for each participant was then calculated by
averaging the accuracies of 11 facial expressions. In this
study, the total number of samples was 760 (19 trials ×
40 segments) for each participant and each facial expression.

IV. RIEMANNIAN MANIFOLD-BASED APPROACH
Recently, Riemannian manifold-based pattern classification
has attractedmuch interest for brain computer interface (BCI)
applications as it has been reported that BCI performance
can be significantly improved using this approach [28]–[30].
We hypothesized that the Riemannian approach could also
be successfully applied to our problem because this approach
utilizes spatial channel covariance unlike the conventional
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TABLE 2. Features used for fEMG pattern classification.

features, such as RMS,WL, SE, and CC, which are evaluated
independently from each channel signal. It was expected
that the Riemannian approach might effectively consider the
muscle synergy during the expressive movements of the face
as this phenomenon is similar to the synchronous brain activa-
tions during specificmental tasks in BCI. However, to the best
of our knowledge, this approach has not been employed in
myoelectric interfaces. In this study, we investigated whether
Riemannian manifold-based pattern recognition can enhance
the overall performance of our FER system.

A. PREPROCESSING
Contrary to the conventional approach that uses bipolar
montage, raw fEMG signals recorded from eight chan-
nels (see Fig. 2) in a unipolar setup were used in the
Riemannian manifold-based approach. Raw fEMG signals
were notch-filtered at 60 Hz and band-pass filtered using a
4th order Butterworth filter with cutoff frequencies of 20 and
450 Hz, similar to the conventional approach.

B. DATA SEGMENTATION
The data segmentation process was identical to that of the
conventional process (see section 2.5.2) except that the num-
ber of channels was different. Hereafter, a single segment
of fEMG signals will be denoted by xw ∈ RC×S, where
w = 1, 2, 3, . . . ,W , with W being the number of win-
dows, C the number of channels, and S the number of
samples in a single segment. In this study, W and C were
40 (= 2 s / 0.05 s) and 8, respectively, and S was determined
by the analysis window length (various lengths were tested
from 50 to 1,500 ms with a step size of 50 ms).

C. FEATURE EXTRACTION
For each fEMG segment xw, a C × C sample covariance
matrix (SCM) can be computed as Cw = 1/(S − 1)xwxwT.
The SCM is a symmetric and positive-definite (SPD) matrix

and it is known that the space of the SPD matrices become
a Riemannian manifold [43], which implies that it can be
regarded as a point on Riemannian manifolds. In Rieman-
nian manifolds, a finite-dimensional Euclidean space can
be defined on a tangent space at an SCM. Therefore, it is
important to determine a reference SCM, which will be used
to form a tangent space [29]. In other words, mapping the
Cw onto a tangent space can be regarded as new fEMG
feature extraction in the Euclidean space, and thus machine
learning-based classification algorithms can also be applied.

The reference SCM, Cref, can be computed using
Algorithm 1 in a previous literature [28] (Please see the
Appendix for the details of the algorithm). Once the Cref
was computed, Cw computed with xw was mapped onto the
tangent space formed byCref. Eventually, the upper triangular
elements of matrices in the tangent space were used as
features. The tangent spacemapping process is well described
in Algorithm 2 in section 4 of [30]. Note that the number of
features was 36 (= (8 × 9) / 2) in this study. More detailed
theoretical and mathematical descriptions on the Riemannian
geometry-based feature extraction can be found in
literatures [28]–[30].

D. CLASSIFICATION
A classification method identical to that of the conventional
approach was employed, except that the training and test
dataset features could be evaluated using the tangent space of
Cref once Cref was computed using the Cw’s computed from
the first trial of each of the 11 selected facial expressions.

V. RESULTS
A. INFLUENCE OF WINDOW LENGTH ON PROCESSING
DELAY
In real-time FER systems, a short recognition time is
important. Therefore, we first investigated the influence
of window length on the processing delay time. Recog-
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nition time includes the time taken for signal preprocess-
ing, feature extraction, and classification. Recognition times
corresponding to conventional and Riemannian approaches
were measured using a series windows of different lengths
(50–1,500 ms with a step size of 50 ms; i.e., 50, 100, . . . ,
1,450, 1,500) on a desktop PC (Windows 10, 16 GB RAM,
Intel Core u7 7700 3.60 GHz).

Fig. 4 shows the changes occurring in recognition time
as a function of analysis window length in the conventional
and Riemannian approaches. While the recognition time for
conventional approach increased significantly at higher win-
dow lengths, the time required for the Riemannian approach
did not increase much. To investigate the main cause for
this difference, we measured the time taken to calculate
each feature of conventional and Riemannian approaches.
The average times taken to calculate RMS, CC, WL, SE,
and the Riemannian feature from a 300 ms segment were
0.17ms, 0.28ms, 0.16ms, 2.80ms, and 0.57ms, respectively.
It took much longer time to calculate SE than other features,
which is thought to be the main reason why the conventional
approach spent longer recognition time than the Riemannian
approach. To implement an online FER system with a speed
of 20 frames per second, the classification decision should
be made within 50 ms. Therefore, an analysis window length
of 1,100 ms was determined as the maximum window length
(see Fig. 4) as the signal processing time exceeds 50 ms for
an analysis window length longer than 1,100 ms.

FIGURE 4. Time taken for recognizing a facial expression with respect to
different analysis window lengths in conventional and Riemannian
approaches.

B. DETERMINATION OF OPTIMAL ELECTRODE
CONFIGURATION AND WINDOW LENGTH
The optimal electrode configuration and analysis window
length for conventional and Riemannian approaches were
determined based on recognition accuracy. Recognition accu-
racies with respect to different window lengths and candidate
electrode configurations are shown in Fig. 5.

FIGURE 5. Recognition accuracies with respect to different window
lengths and candidate electrode configurations.

As for the electrode configuration, configuration 1 yielded
the highest recognition accuracy for both conventional and
Riemannian approaches and hence was selected as the opti-
mal electrode configuration.

With respect to window length, recognition accuracies of
both approaches increased as the window length increased.
These results are in line with those reported in the previous
literature on myoelectric interfaces, where larger window
sizes were recommended to avoid the increase in the bias and
variance of features [36]. Themaximum recognition accuracy
was achieved at a window length of 300ms in the Riemannian
approach, while the maximum accuracy was achieved at a
window length of 1,100 ms in the conventional approach.
Accordingly, 300 ms and 1,100 ms were determined as the
optimal window lengths for the Riemannian and conventional
approaches, respectively.

When the optimal electrode configuration (Configuration
1) and optimal window lengths (300 ms and 1,100 ms) were
used, the average recognition accuracies for the conventional
and Riemannian approaches were 74.58% ± 9.44% and
85.01% ± 7.30% (mean ± standard deviation), respectively.
Fig. 6 represents a violin plot [44] of the average recogni-
tion accuracies of conventional and Riemannian approaches.
It could be observed that the average recognition accuracy
of the Riemannian approach was statistically significantly
higher than that of the conventional approach (paired t-test:
p = 3.66e–16). The standard deviation of the accuracies was
lower in the Riemannian approach than in the conventional
approach, implying that the inter-individual variability in
the recognition of facial expressions was also reduced by
employing the Riemannian approach.

Fig. 7 shows the recognition accuracies of conventional
and Riemannian approaches for each participant; error
bars indicate standard deviation. The Riemannian approach
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FIGURE 6. Violin plots of average recognition accuracies evaluated using
the optimal window lengths and electrode configurations for
conventional and Riemannian approaches. ∗ indicates a statistically
significant difference (p < 0.05).

always yielded a higher recognition accuracy than the con-
ventional approach. The largest and second-largest differ-
ences in accuracy between the conventional and Riemannian
approaches were 20.73% and 17.82%, respectively. The
increases in the classification accuracy were much higher in
the participants who showed low classification accuracies in
the conventional approach (e.g., participants 16 and 7) than
in the participants who showed high classification accuracies
(e.g., participants 11 and 1), which mainly contributed to the
significant increase in the average classification accuracy.

Fig. 8 shows the recall, precision, and F1 score for each
facial expression. Note that facial expression types in the
three bar graphs were sorted by recognition accuracy for the
Riemannian approach in a descending order. The Riemannian
approach outperformed the conventional approach for all the
tested facial expression types, in terms of recall, precision,
and F1 score. The Riemannian approaches were particularly

effective to increase F1 scores for three facial expressions
of kiss, sadness, and anger. The increments of F1 scores
for kiss, sadness, and anger were 14.24%p, 13.73%p, and
13.14%p, respectively. For example, the kiss expression was
oftenmisclassified as the sadness and anger expressionswhen
the conventional approach was used, but the misclassification
rates were considerably dropped from 7.2% to 3.7% and
from 4.7% to 0.4%, respectively, by using the Riemannian
approach.

C. FURTHER ANALYSIS WITH OPTIMAL CONDITIONS
ITRs for the conventional and Riemannian approaches were
1.76 and 2.33 bits/trial, respectively. An ITR of 2.33 bits/trial
was comparable to the highest reported ITR (2.34 bits/trial)
among six studies on fEMG-based FER listed in Table 1.
It should be noted that the ITR of 2.33 bits/trials reported in
this study was achieved using only a single training dataset,
while four repeated training sessions were required to achieve
similar ITRs in previous studies [24], [25].

D. REAL-TIME FACIAL ANIMATION WITH AN AVATAR
An online fEMG-based FERprogramwas implemented using
the optimal conditions derived from offline results using
Matlab. Louise’s 3D head model (EISKO, Paris, France)
developed using commercial 3D-CG software Maya
(Autodesk, Inc., San Rafael, CA, USA) was utilized as an
avatar. The Avatar’s 11 facial animations were embodied
based on the 11 facial expression picture stimuli shown
in Fig. 3. The designated facial expressions were animated
in real time based on the recognition results transported via
user datagram protocol (UDP) communication. A snapshot
of the online experiments is included in Fig. 9 and the movie
can be found at https://youtu.be/KLhR6EVkGOM.

In this demonstration experiment, a male participant (age:
26 years old) was asked to make 11 facial expressions
twice, during which his expressions were reflected in the
avatar’s face in real time. Prior to the online experiment,

FIGURE 7. Recognition accuracies of conventional and Riemannian approaches for each participant. Error bars indicate standard deviation.
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FIGURE 8. Recall, precision, and F1 score of each facial expression for conventional and Riemannian approaches. These
parameters were calculated using the following equations: Recall = TP/TP + FN, precision = TP/TP + FP; F1 score = 2 ×
(recall × precision) / (recall + precision), where TP and FP represent true positive and false positive, respectively.

FIGURE 9. A snapshot of online experiments taken when a participant
was making a surprised facial expression (a YouTube video can be found
at https://youtu.be/KLhR6EVkGOM).

the participant was asked to make 11 facial expressions
to train a classifier. During the online experiment, fEMG
data were stored in a circular buffer, when a series of sig-
nal processing steps including preprocessing and Riemann

feature extraction were conducted simultaneously. The
extracted fEMG features were then fed into the pre-built
classifier in real time with a rate of 20 times per second.
The online FER system could correctly identify all designated
facial expressions (22 trials); however, during the transient
period between two facial expressions, unstable fluctuations
of classification results were sometimes observed, which
needs to be enhanced through further studies.

VI. DISCUSSION
In this study, we implemented an FER system based on
fEMG recorded around the eyes to reflect a user’s facial
expressions on the VR avatar for realizing a highly interactive
social VR environment. Our FER system could classify
11 facial expressions with a fairly high recognition accu-
racy of over 85% with just a single registration for each
facial expression. An increment of more than 10% could
be achieved in recognition accuracy using the Riemannian
manifold-based classifier when compared to the conventional
feature extraction method. It is noteworthy that we could
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FIGURE 10. A confusion matrix. Each row and column of the confusion matrix represent true labels and predicted
labels, respectively.

achieve a high ITR of 2.33 with only a single training session;
this value is similar to ITRs reported in previous studies
that used four repeated training sessions [24], [25]. Although
there has been extensive research to realize fEMG-based
FER systems, no previous study tried to reduce the number
of training sessions nor did they optimize the parameters
affecting the performance of fEMG-based FER systems.
In this study, we not only found an optimal fEMG elec-
trode configuration on the HMD, but also investigated the
influence of window length on system performance. Most
importantly, we implemented an online FER system in
which a virtual avatar could mimic a user’s facial expres-
sions in real time at a high refreshing rate of 20 frames
per seconds.

To identify frequently occurring errors in the imple-
mented FER system, a confusion matrix was constructed
(see Fig. 10). The rows and columns in the confusion matrix
represent true labels and predicted labels, respectively. In the
confusion matrix, values in the diagonal elements represent
recalls while off-diagonal elements represent false negative
rates (FNR). It can be seen from the figure that there was
high confusion among fear, surprise, and sadness expressions.

For example, sadness was frequently misclassified as anger
and fear with high FNRs of 10.2% and 8.1%, respectively.
As seen in Fig. 3, the sadness expression does not show
distinct facial gestures compared to other expressions such as
surprise and happiness, making it difficult for the participants
to mimic its unique facial gesture. Indeed, according to our
post-experimental surveys, many participants answered that
they had difficulty in mimicking the sadness expression. Fear
was also frequently misclassified as surprise with a high FNR
of 12.1%. This high confusion rate might originate from the
similar facial gestures around the eyes between the fear and
surprise expressions. It can be readily seen from Fig. 3 that
both facial expressions include sharp raising of both eye-
brows. On the other hands, the anger and fear expressions
showed a low average FNR of 3.79% even though both
expressions are associated with negative emotions. This low
confusion rate might originate from the distinct differences
in both eyebrow and lip gestures between them. As seen in
Fig. 3, both eyebrows are lowered, and the lips are firmly
closed in the anger expression; whereas both eyebrows are
raised, and both labial commissures are lowered in the fear
expression.
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It is noteworthy that Riemannian approach yielded high
classification accuracy with a relatively shorter analysis
window length (300 ms) compared to the conventional
approach (optimal window length = 1,100 ms). This implies
that the maximum time delay of Riemannian approach is
300 ms, assuming that the FER processing time is negligi-
ble (less than 2 ms as shown in Fig. 4). It is well-reported
that a threshold of detectable visual feedback delay of one’s
own body movement is about 200 ms [42]. Even when the
analysis window length is reduced to 200ms, the Riemannian
approach can still yield a high classification accuracy of over
84% (see Fig. 5), suggesting that the proposed fEMG-based
FER system might be used in practical scenarios without
making the users of the system feel uncomfortable due to
the delayed visual feedback. We believe that the main reason
why the Riemannian approach outperformed the conven-
tional approach in terms of classification accuracy is that the
Riemannian approach evaluated the interrelationship among
EMG signals recorded from multiple channels, allowing for
the consideration of spatial information contained in the
fEMG datasets, which could not be considered in the con-
ventional approaches.

Although the present study demonstrated the possibility of
practical fEMG-based FER systems, some issues still remain
to be addressed. Firstly, it should be examined whether our
FER system can be used repeatedly for a long period of
time. It is well known that the performance of myoelectric
interfaces degrades gradually due to several factors includ-
ing electrode shift, humidity, and impedance changes [45].
Therefore, test-retest reliability and reusability of the FER
system need to be verified in future studies. Secondly,
although an fEMG-based FER system could be implemented
with a single training dataset in this study, implementation
of a user-independent FER system is also a promising future
research topic. Our offline datasets can be employed to inves-
tigate the feasibility of the user-independent FER system as
our datasets were collected by presenting a set of designated
facial expressions to the participants. Thirdly, feasibility of
voluntary emotional FER needs to be validated. In this study,
participants were asked to mimic several designated emo-
tional faces, which might be somewhat impractical because
people have their own facial expressions reflecting their
emotional states. Fourthly, the classification performance of
our FER system might be further enhanced by employing
more numbers of EMGelectrodes embedded in theHMD face
pad. We are now implementing an FER system with 16 elec-
trodes by reducing the size of each electrode and design-
ing an arrayed electrode configuration. Lastly, a method
for tracking natural facial muscle movements needs to be
developed. Our system could recognize only 11 designated
facial expressions but could not recognize facial movements
not included in the training set. A regression-based approach
would be more appropriate to implement such a system rather
than the present classification-based approach. This is an
interesting topic that we would like to pursue in our future
studies.

APPENDIX

Algorithm 1 Geometric Mean of SCM Matrices
Input: SCM matrices {C1,C2, . . . ,CW} and tolerance
ε > 0.

Output: The estimated geometric mean Cm.

Initialize: C(t)
m =

1
W

∑W
w=1 Cw, t = 1, ε = 10e-5

While

S = 1
W

∑W
w=1 LogC(t)

m
(Cw)

C(t+1)
m = ExpC(t)

m
(S)

t = t + 1

Until
∥∥∥C(t+1)

m

∥∥∥
F
< ε

Return C(t+1)
m

LogC (Cw) = C
1
2 logm

(
C

(
−

1
2

)
CwC

(
−

1
2

))
C

1
2 , where logm(·) denotes

the logarithm of a matrix. Please note that the logarithm of a diag-

onalizable matrix A = VDV−1 is defined as logm(A) = VDTV−1,
where the elements of D are given by d(i,j) = log(d(i,j)). ExpC

(
S
)
=

C
1
2 expm

(
C(−

1
2 )SC(−

1
2 )
)
C

1
2 , where expm(·) denotes the exponential of

matrix. Please note that the exponential of a diagonalizable matrix A =

VDV−1 is defined as logm(A) = VDTV−1, where the elements of D are

given by d(i,j) = exp(d(i,j)). ‖.‖F denotes Frobenius Norm.
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