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Hybrid Genetic Algorithm for Electromagnetic
Topology Optimization

Chang-Hwan Im, Hyun-Kyo Jungenior Member, IEEEand Yong-Joo Kim

Abstract—This paper proposes a hybrid genetic algorithm
(GA) for electromagnetic topology optimization. A two-dimen-
sional (2-D) encoding technique, which considers the geometrical
topology, is first applied to electromagnetics. Then, a 2-D ge-
ographic crossover is used as the crossover operator. A novel
local optimization algorithm, called the on/off sensitivity method,
hybridized with the 2-D encoded GA, improves the convergence
characteristics. The algorithm was verified by applying it to

various case studies, and the results are presented herein. (CY
Index Terms—Genetic algorithm (GA), geographic crossover, ]:- ’ I I - ‘ I ' ‘ .:
local optimization, topology optimization, two-dimensional (2-D)
encoding. (b)
|. INTRODUCTION Fig. 1. Comparison of 1-D and 2-D encoding from the viewpoint of

o ) ) schemata. (a) 2-D encoding and its schemata. (b) Equivalent 1-D encoding and
TOCHASTIC optimization algorithms have been widelyts schemata. (b) is a 1-D representation of (a). We can see from the figures that

sed for various electromagnetic optimization problem@,e 1-D encoding may lose its neighboring information, as shown in (b).
in particular to optimize the geometrical dimensions of various
electromagnetic devices [1]-[4]. The genetic algorithm (GARsSists the main GA to generate superior solutions, and at the
simulated annealing (SA), evolution strategy (ES), and tasame time, the main GA perturbs the local solutions and pre-
search algorithm, etc. are all well-known examples of the steents them from converging to a local minimum too prema-
chastic algorithms. Unfortunately, they have not been appliéiérely. An appropriate combination of the two algorithms can
much to direct shape optimization or topology optimizatiogccelerate the convergence speed and minimize the possibility
problems [5], because they carry a severe computational cekbeing trapped in a local optimum.
and have difficulty in dealing with large numbers of design To verify the proposed algorithm, three case studies were
variables. Instead, sensitivity analysis has attracted muednsidered, including a simplified magnetoencephalography
interest because it can deal with large amounts of desiifEG) source localization problem, a current source op-
variables quickly and effectively [6]-[8]. However, it has thdimization problem, and a brushless DC motor (BLDCM)
problem that a solution may converge on a local minimum, d@gtimization for reduced cogging torque. Through the case
to its natural deterministic characteristic that stems from tigéudies, it will be shown that the proposed method can yield

derivatives of the objective functions. reasonable solutions with high efficiency.
In this paper, a hybrid GA for electromagnetic topology opti-
mization is proposed. The GA adopts a two-dimensional (2-D) Il. METHODOLOGY

encoding [9] to represent the geometrical topology effectivelx. 2-D Encoding for GA
A multidimensional geographic crossover is applied to increase o ) )
the diversity of the population [10]-[12]. The effectiveness of A linear stringis a symbolic feature of GAs, and most GAim-
this approach has already been verified through its applicatiBlgmentations have been based on linear encodings [13]. To fit
to computer science [10], [11] and very large scale integratiéO linear strings, solutions are enpoded into one-d|r_nen3|ona|
(VLSI) circuit design [12]. However, its application to topology(1-D) chromosomes, as shown in Fig. 1(b). However, if 2-D ge-
optimization is totally new, not only in electromagnetic optiometry is embedded into a 1-D array, considerable distortion
mizations, but also in mechanical ones. of neighboring information is unavoidable, as we can see from
In this paper, to improve the accuracy and effectiveness of thig. 1(2) and (b). Due to the broken schemata, the 1-D encoding
“conventional” GA, a novel local optimization algorithm called1@s always suffered from its poor convergence characteristic.
the on/off sensitivity method is proposed and hybridized with Cohoon and Paris first proposed 2-D encodings and demon-

a 2-D encoded GA. The proposed local optimization meth@drated moderate success in solving such a problem [9]. This
approach led to the development of various crossover methods,
_ _ , which will be described in Section 11-B.
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Fig. 2. Crossover methods. (a) Cohon and Paris—rectangular boxes were
used. (b) Anderson—parallel lines were used. (c) Bui and Moon—more natural
lines were used. The white region represents genes from parent 1 and the gray
region represents those from parent 2. The recent method (c) can generate more
diverse solutions than the others. © (d

[9]. In their approach, given two parent chromosomes, the algo-
rithm chooses a small rectangle from one parent and copies the
genes in the rectangle into the offspring; the remainder of the
genes are copied from the other parent, as shown in Fig. 2(a). 3
Andersonet al. suggested a block-uniform crossover on a 2-D 1|2 3
matrix chromosome that tessellated the chromosome irtg 1
blocks; for each block, the genes in the block are copied from a
uniformly selected parent, as shown in Fig. 2(b) [14]. It is evi-
dent that the block uniform crossover has a greater opportunity
to generate more diverse offspring. (e 163}

Most recently, Bui and Moon proposed a geographic
crossover to increase the diversity of offspring [10]. It genergliy 3. Example of regional separation process: (a)~(d) show examples
ized the conventional block uniform crossover and introducetl basic cutting lines and rules for assigning region number. The assigned
natural lines, as shown in Fig. 2(c). It was proven that the whglgmbers for each region are summed up as shown in (c). Then, the whole
encoding space could always be divided into two separated o or gfeﬁ?gzrsﬁgivwﬁﬂ t("fgo groups by checking if the summed numbers
regions, as shown in the figure. The offspring can be generated
by alternatively copying the intervals of two parent strings. It
was also proven that the geographic crossover could genef@teNew Local Optimization Algorithm—On/Off Sensitivity
more diverse offspring than any of the conventional crossovers o )
[10]-[12]. Because it is somewhat difficult to implement In this paper, a new local optimization algorithm for electro-

the method practically, we will introduce a relatively simplén@gnetic topology optimization is proposed. In essence, elec-
process used in this paper. tromagnetic topology optimizations optimize the distribution

Step 1) First, one should bear in mind that there can materi_als such as cu_rrent sources, magnetic materials, etc.
six possible cutting lines: a) top-to-right; b) top-to- ence, binary encoding is approp_rlate to represent whether such

left; ¢) bottom-to-left: d) bottom-to-right: e) top-to- materials are present or not. In this paper, 1 represents the pres-

bottom: and ) left-to-right. The whole space is Sepae_nce of a matepa] an_d 0 reprgsents the absence of it. The pro-
' osed local optimization algorithm adopts the concepts of both

rated into two regions by one cutting line. Then, onB o i i .
should define a?ule to gssign 0 or?L to each regio sensitivity analysis and SA. The algorithm procedure is as

for all cases a)—f). Fig. 3(a)—(d) shows the exampl gllows.

of 0/1 assignment. Step 1) Calculation of On/Off SensitivitfChange the state
Step 2) After generating all the cutting lines, the assigned of each gene—if the state is 0 (off), replace it by 1

numbers are summed up for every gene as in (on), and vice versa. Then, check the variation (sen-

Fig. 3(e). sitivity) of cost value. Higher sensitivity of a gene
Step 3) If the summed number has an odd value, the off- implies that the change of state can improve the cost

spring copies the gene from parent 1, and vice versa. value much more.

This process is applied to all genes. Then, as shownStep 2) Change State of GeneAfter calculating the sensi-

in Fig. 3(f), we can see that the whole space is sepa- tivity of all genes, change the state of some genes,

rated into two regions very effectively. selectively. More sensitive genes are selected for
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mutation and the number of genes selected for mu-
tation is defined as follows:

N.=N; x P (l)

where N, is the number of genes that change their
states(0 — 1,1 — 0), N, is the number of genes
that have positive sensitivity values, aRds a prob-
ability between 0 and 1, which will be explained
again at the end of this section.

Step 3) Annealing.Check the cost value after the mutation.
If the cost value is not improved at all, decrease the
value of P using the following annealing scheme:

(b)

Sensitivity
Low

P(new) = P(old) - 0.85. 2

Any value can be used instead of 0.85. In this paper,
0.85is selected because it is usually used for conven-
tional annealing processes. Repeat Step 2)-Step 3)
until some improvement of the cost value is detected.

Step 4) RepeatStep 1)-Step 3) until the cost value is not

improved any more.

Fig. 4 shows an example of the process of the local optimiza-
tion algorithm. Assume that Fig. 4(a) is an optimal solution and
Fig. 4(b) is an initial one. The calculated sensitivity profile is
shown in Fig. 4(c). The positive sensitivity implies that cost
value is improved when a gene changed its state, and vice verse
If the most sensitive gene changes its state, as shown in Fig. 4(d)
it is evident that the cost value is improved. However, it seems
somewhat inefficient because the cost value can be more im-
proved by changing two or more genes’ states. That is why we
adopted a concept from SA. If the probabiliiyin (1) is set
to be 1, the solution is changed, as shown in Fig. 4(e). From Sensitivity
several simulations, it was observed that the cost value usually
becomes worse (not improved at all) when too large numbers of
genes are changed, as shown in Fig. 4(e). When the probability —0
P is decreased using (2), an improved solution can be obtained
as shown in Fig. 4(f). Then, the sensitivity computation is per-
formed again, of which the result is shown in Fig. 4(g). From the ¥ High
sensitivity profile, we can find the optimal solution as shown in ® ™
Fig. 4(h). In Step 2), the initiaP should be a large value close
t01 becz_ius_e there is no process to '”QFeaS_e the probability. -EB%. An example to illustrate the process of the proposed local optimization
initial P is fixed throughout the whole iteration. algorithm (see text).

The proposed local optimization algorithm sometimes

yleldedhvery goo.(tj CharaCte(;'?t'CS'l eveln vr.lthout G'Al" In mogj reover, excessive use of local optimization can degrade
cases, NoWEVer, It converged 1o a local optimum, uniess a gqg diversity of the population. Therefore, in this paper, the

CY

®

approximation of the initial solution was given. proposed local optimization algorithm was not applied to every
. iteration or population. If a random number generated between
D. Whole Procedure of the Hybrid GA 0 and 1 is larger than a predetermined probability, the on/off

Usually, there are two main classes in hybrid GAs: Lamasensitivity is applied to some superior population. Fig. 5 shows
ckian and Baldwinian GAs. The Lamarckian GAs update tithe whole procedure of the proposed GA. In the procedure,
chromosome after the local optimizations, whereas the Bakl-general mutation method is applied only when a random
winian GAs do not update the chromosome after the local opumber between 0 and 1 is smaller than a predetermined prob-
timizations, and the local optimizations are only used as a fability, which perturbs a small fraction of the offspring. The
ness evaluation. Generally, the Lamarckian GAs have been mpredetermined probability of 0.015 is generally used; however,
widely accepted and the Baldwinian GAs’ use has been sonire-this paper, larger values are used to alleviate premature
what restricted [15], [16]. In this paper, we adopted the conceptsnvergence due to local optimization. After the mutation
of the Lamarckian GAs. or crossover, worst solutions in the original population are

The proposed local optimization algorithm requires mamgplaced with newly generated ones. The GA procedure is
function calls and consumes extensive computational timerminated when 80% of the solutions have the same value.
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Fig. 7. Exact (forward) solution that is to be reconstructed.

TABLE |
CONDITIONS FOREXECUTING GA
Population size 3000
S Crossover frequency 2000 (out of 3000)
i itical probability for mutati 0.03
Reconstruction Critical probability for mutation X
Number of cutting lines 7

Fig. 6. Description of simulation model. Case study I: MEG source
reconstruction.

I1l. SIMULATION AND RESULTS

The proposed algorithm was applied to three case studies: 1)

H

a MEG source localization problem; 2) a current source opti- :.
mization problem; and 3) a BLDCM optimization for reduced
cogging torque. Fig. 8. Bestreconstructed solution after 20 repeated executions of GA without

local optimization.
A. Case Study —MEG Source Localization Problem

Reconstructing electric activity inside a brain using magnetid€ magnetic field induced by a current dipole moment can be
measurements outside the head has attracted a great deal dfaffulated using Biot-Savart's law
terest and is usually referred to as the MEG source reconstruc-
tion problem [17], [18]. A simplified MEG model was selected _m@x(r—rg)
for the verification of the optimization algorithm. Fig. 6 shows A r—rof?

the schematic view of the simulation model. S|xtex¢_@-d|rec- here@ is the current dipole moment vecteris the positional
tional superconducting quantum interference device (SQUI ctor of the sensor.,, is the positional vector of the dipole
magnetometers, capable of measuring parallel magnetic fielgﬁdB is the measuréd magnetic field at the sensor '
were assumed. The magnitudes of the current dipole momentg apply GA, the objective function (cost) is defined to mini-

at144 (12>f 12) rectangular meshes needed to be reconstruct ze the difference between the measured (forward) and recon-
The magnitudes of the moments were fixed at a constant va 8 cted magnetic field at each sensor position

and their directions were perpendicular to the source SurfaceAlthough the problem may seem very simple, GA has hardly
Fig. 7 sthovxt/s(;he exact (forward) solution that should have beﬁ@en applied to such a problem because the total number of pos-
reconstructed. sible cases is so high; in this cagé® For this reason, a general

Th_e main reason in §elect|n_g this ”?Ode' was th"’!‘ the forw Ausingal-Dlineararray and a general GA using 12 separated
solutions could be easily obtained using an analytic apprbac'élrrays failed to find the exact solution. However, the GA using

1Some kinds of reconstruction problems such as a crack detection problnd-D geographic crossover did succeed in finding a very close
(materials to be reconstructed: air and conductor) can be classified as a topolegyution—of course, it was not exact. Table | shows the con-

optimization problem. Generally, the MEG source reconstruction problem (iﬁti ns required to execute the GA without local optimization
not such a problem, because the magnitude of each dipole cannot be deter e(gJ . ’
a priori. Therefore, we simplified the problem to verify the optimization™!d- 8 shows the best reconstructed solution after 20 repeated

algorithm. applications of the GA without local optimization.

3
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Fig. 9. Best reconstructed solution after 20 repeated executions of GA with N 7
local optimization. (A
Y
11818}
TABLE I T
COMPARISONS OFCAPABILITY OF GAS WITH AND WITHOUT LOCAL Measuring Domain|
OPTIMIZATION ALGORITHM AFTER 20 REPEATED EXECUTIONS (CASE I) (a)
Without Local Opt. With Local Opt. 1 2 3
Best Solution [x10™"2T] 12 0.0
Average Solution [x10™7T] 8.8 2.1
Worst Solution [x1072 T} 19.7 43
Because the objective function is defined as the difference between the
measured and reconstructed magnetic field at each sensor position, smaller
value represents better solution.
4 5 6
All conditions, which were applied to the proposed GA using
local optimization, are given in Table I. The local optimization
started to work after the 50th GA iteration; not from the start,
because impatient use of the local optimization may have been 7 l 8 9
harmful to the creation of the schemata. If a random number (b)
between 0 and 1 was larger than 0.8, then local optlmlzat|on - o o ) )
was applied to 100 superior solutions. Fig. 9 shows the b Initial magnetic field distribution (a) in whole numerical model and
: o in measunng domain. The FEM was used to illustrate the flux distribution.
reconstructed solution after 20 repeated applications of the

with local optimization.

To verify the results quantitatively, best, worst, and average
values of the objective function were compared. The results are
given in Table Il. From the table, the superiority of the GA with
local optimization can be easily confirmed.

B. Case Study IlI—Source Optimization Problem

Magnetic resonance imaging (MRI) coil design is a typical
application of the source optimization problem [19], [20].
Fig. 10 shows the numerical model under consideration and the
initial magnetic field distribution. The problem was to make
the y-directional flux density in a measuring box constant.
A 12 x 14 (totaling 168 variables) 2-D matrix was used to
represent the distribution of the source coils. The objective
function that needed to be minimized was defined as

9 Fig. 11. Best reconstructed solution after 20 repeated executions of GA
without local optimization.
F=loy|+ Y |B.il 4)

Biot—Savart’s law was used for the magnetic field calculation.
where B,,; representg:-directional magnetic flux density at aFigs. 11 and 12 show the best reconstructed source distributions
measuring point [in Fig. 10(b)], ands,, is the standard devia- after 20 repeated executions of GA with and without local op-
tion of they-directional flux density at all measuring points. timization, respectively. Fig. 13 shows the magnetic field dis-

Both GAs—with and without local optimization—were ap-4ribution in a measuring box by the GA with local optimiza-
plied to the topology optimization, and the operating condiion. Table Il shows the comparison of best, worst, and average
tions were the same as in Table I. An analytic solution based ealues of the objective function (4) after 20 repeated executions.
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Fig. 14. Numerical model for case study IIl—BLDCM with outer rotor.

Fig. 12. Best reconstructed solution after 20 repeated executions of GA with
local optimization.

@
1|6
2|7
3|8
4|9
5|10
(b)

Fig. 13. Final magnetic field distribution in rectangular measuring domain by
the GA with local optimization (best solution). FEM was used to illustrate theig. 15. Mapping of (a) the real geometry to (b) a rectangular chromosome
flux distribution. array— half of one pole is used considering symmetry.

TABLE Il
COMPARISONS OFCAPABILITY OF GAS WITH AND WITHOUT LOCAL
OPTIMIZATION ALGORITHM AFTER 20 REPEATED EXECUTIONS (CASE II)

Without Local Opt. With Local Opt.

Best Solution [x10°T] 229 0.82
Average Solution [x10° T] 11.54 5.81
Worst Solution [x10°T] 28.77 8.43

Smaller value of the solution represents better one as in the previous case.

Fig. 16. Best optimized pole shape. A relatively smakt B matrix array was
C. Case Study lIl—BLDCM Optimization to Reduce used, considering FEM calculation time.

Cogging Torque
.considerably reduced cogging torque profile as illustrated in

delz'e?qgr?tlOne?r;;r?gr?':-nn%atorrgtjemlstc?rsvexlCg'thcaprLrg?:l:/lmé ig. 17. Table IV shows results from 20 repeated executions
'gning p 9 Including [ or the GAs with and without local optimization. Because

Fig. 14 shows the outer-rotor type BLDCM. To analyze thfhe number of genes is relatively small compared with the

model, the 2-D finite-element method (FEM), using periodi revious two cases, most of both GAs’ solutions converged to

boundary conditions, was used. The sum of the cogging torq fig optimal pole shape shown in Fig. 16. However, the success

at 11 rotating positions was used for the cost value. The des‘%rge of the GA with local optimization is higher than that of the
variables were the material (iron) distribution of the stat A without local optimization, as shown in the table
0 ' '

poles. Each geometric position in Fig. 15(a) corresponds
the rectangular chromosome matrix in Fig. 15(b). Because the
analysis of BLDCM requires extensive calculation time, only a
relatively small 7x 5 matrix array was considered. The total In this paper, a hybrid GA for electromagnetic topology
population numbered 1000 and the replacement populatioptimization was introduced. A 2-D encoding and geographic
numbered 600. The on/off sensitivity method (with the selecrossover was first introduced to electromagnetic topology
tion probability of 0.8) was applied after the 20th iterationoptimization problems. To improve conventional GA, a novel
The optimized pole shape is shown in Fig. 16, which yieldslacal optimization algorithm called on/off sensitivity were

IV. CONCLUSION



IM et al: HYBRID GA FOR ELECTROMAGNETIC TOPOLOGY OPTIMIZATION 2169

. [10] T.N.Buiand B. R. Moon, “On multi-dimensional encoding/crossover,”
—+ Before Optimization in Proc. 6th Int. Conf. Genetic Algorithm®ittsburgh, PA, July 1995,
-~ After Optimization pp. 49-56. _ ' _ _
o [11] B. R. Moon and C. Kim, “A two-dimensional embedding of graphs for
genetic algorithms,” irProc. Int. Conf. Genetic Algorithm4.997, pp.
204-211.
[12] B. R. Moon, Y. S. Lee, and C. K. Kim, “GEORG: VLSI circuit parti-

tioner with a new genetic algorithm frameworkl” Intell. Manufact,.

vol. 9, pp. 401-412, 1998.
[13] J. Holland, Adaptation in Natural and Artificial Systems2
) ) ) ed. Cambridge, MA: MIT Press, 1992.

[14] C. A. Anderson, K. F. Jones, and J. Ryan, “A two-dimensional genetic
0 80 120 ) 180 240 300 360 algorithm for the Ising problem,Complex Systvol. 5, pp. 327-333,
Electrical Angle [Deg] 1991.
[15] G.Hintonand S. Nowlan, “How learning can guide evolutiocBgmplex

Fig. 17. Variation of cogging torque before and after the pole-shape Syst, vol. 1, pp. 495-502, 1987.
optimization. [16] D. Whitley, V. Gordon, and K. Mathias, “Lamarckian evolution, the
Baldwin effect and function optimization,” iRroc. Int. Conf. Evolu-
tionary Computation1994, pp. 6-15.

Cogging Torque [N]

TABLE IV [17] A. Dale and M. Sereno, “Improved localization of cortical activity by
COMPARISONS OFCAPABILITY OF GAS WITH AND WITHOUT LOCAL combining EEG and MEG with MRI cortical surface reconstruction: A
OPTIMIZATION ALGORITHM AFTER 20 REPEATED EXECUTIONS (CASE III) linear approach,J. Cogn. Neurosgipp. 162-176, 1993.
[18] L. Gavit, S. Baillet, J.-F. Mangin, J. Pescatore, and L. Garnero, “A
Without Local Opt. With Local Opt. multiresolution framework to MEG/EEG source imagintEEE Trans.

Biomed. Eng.vol. 48, pp. 1080-1087, Oct. 2001.

# oﬂi:(:)lug::;? cvaz;iedto ( thzo) © t19t'20) [19] J.-H. Lee, J.-K. Byun, K. Choi, and S.-Y. Hahn, “Faster calculation of
plima’ pole shape ou' o ut o sensitivity in the source current distribution problem using reciprocity
Success rate (%) 70 95

theorem,”IEEE Trans. Magn.vol. 37, pp. 3596—-3599, Sept. 2001.
[20] D.A.Lowther, W. Mai, and D. N. Dyck, “A comparison of MRl magnet
design using a hopfield network and the optimized material distribution
method,”IEEE Trans. Magn.vol. 34, pp. 2885-2888, Sept. 1998.

proposed and hybridized with the existing GA. This proposed
algorithm was then successfully applied to various problems,
and proved to be a very promising optimization algorithm for

use in the field of electromagnetism. Chang-Hwan Im was born in Taegu, Korea, in 1976. He received the B.S. and

M.S. degrees in 1999 and 2001, respectively, from Seoul National University,

Seoul, Korea, where he is working toward the Ph.D. degree in the School of

REFERENCES Electrical Engineering and Computer Science.

[1] J.-K. Kim, D.-H. Cho, H.-K. Jung, and C.-G. Lee, “Niching genetic al- Hisresearchinterests are bioelectromagnetic applications, numerical analysis
gorithm adopting restricted competition selection combined with patte@{!d design of electromagnetic devices, and microwave passive devices.
search methodfEEE Trans. Magn.vol. 38, pp. 1001-1004, Mar. 2002.

[2] S. Yang, J. M. Machado, C. Ni, S. L. Ho, and P. Zhou, “A self-learning
simulated annealing algorithm for global optimizations of electromag-

netic devices, IEEE Trans. Magn.vol. 36, pp. 1004-1008, July 2000. v,y kyo Jung (M'85-SM'00) received the B.S., M.S., and Ph.D. degrees
(3] C.-H.Im, H.-K. Kim, and H.-K. Jung, “Optimization of the coil shape ¢ the School of Electrical Engineering, Seoul National University, Seoul,

in deflection yoke considering practical coil winding processH#sEE Korea, in 1979, 1981, and 1984, respectively.

Trans. Magn. vol. 38, Pp. 1037_1080‘ Mar. “200.2' d Tab He worked as a Member of Faculty at Kangwon National University, Chun-
(4] ;5 L'hHO’I Sb' \I(ang_, G. Ni, an fH'IC' \Wong, "An |rch1pr_ove Tabu searchoon Korea, from 1985 to 1994, and was with Polytechnic University, New

or the 9? al optimizations of electromagnetic devicd&EE Trans.  vor from 1987 to 1989. He has been teaching at Seoul National University

Magn, vol. 37, pp.h3570—3574r1], Sepg 2001. “Optimal h since 1994. From 1999 to 2000, he also served as a Visiting Professor at the
[5] K.-J. Han, H.-S. Cho, D.-H. Cho, and H.-K. Jung, “Optimal core s aPBniversity of California, Berkeley. His research interests cover the various fields

design for cogging torque reduction of brushless DC motor using genef€ine analysi ; ; ; : ) :

. ysis and design of electric machinery and numerical field analysis of
algorithm,” IEEE Trans. Magn.vol. 36, pp. 1927-1931, July 2000. lectrical syst ially with the finite-el t method

[6] J.-K.Byun, S.-Y. Hahn, and I.-H. Park, “Topology optimization of elec—e ectrical sysiems, especially wi € finie-element method.

trical devices using mutual energy and sensitivitEE Trans. Magn.
vol. 35, pp. 3718-3720, Sept. 1999.
[7] J.-K. Byun, J.-H. Lee, I.-H. Park, and S.-Y. Hahn, “Inverse problem ap-
plication of topology optimization method with mutual energy concepYong-Joo Kim received the B.S. degree from the School of Electrical Engi-
and design sensitivity/EEE Trans. Magn.vol. 36, pp. 1144-1147, July neering, Seoul National University, Seoul, Korea, in 1975, and the M.S. and

2000. Ph.D. degrees from Rensselaer Polytechnic Institute, Troy, NY, in 1984 and
[8] J.-K. Byun, I.-H. Park, and S.-Y. Hahn, “Topology optimization of elec-1987, respectively.

trostatic actuator using design sensitivitlfEE Trans. Magn.vol. 38, Since 1979, he has been with the Machine Control and Application

pp. 1053-1056, Mar. 2002. Research Group, Korea Electrotechnology Research Institute (KERI),

[9] J.P.Cohoonand W. Paris, “Genetic placementPiiac. IEEE Int. Conf. Kyungsangnam-do, Korea. His research interests are analysis and design of
Computer-Aided Desigri986, pp. 422—-425. high-voltage electrical machines and partial discharge.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


