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In the present paper, an improved particle swarm optimization (PSO) algorithm for multimodal function optimization is proposed.
The new algorithm, named auto-tuning multigrouped PSO (AT-MGPSO) algorithm mimics natural phenomena in ecosystem such as
territorial dispute between different group members and immigration of weak groups, resulting in automatic determination of the size
of each group’s territory and robust convergence. The usefulness of the proposed algorithm is verified by the application to a specially
designed test function and a practical electromagnetic optimization problem.
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I. INTRODUCTION

PARTICLE SWARM optimization (PSO) is a kind of sto-
chastic optimization algorithms proposed by Kennedy and

Eberhart [1]. Originally, PSO was inspired by the sociological
behavior associated with birds flocking. In the original version
of PSO, particles fly through the search space influenced by two
factors: each individual’s best position ever found and
the group’s best position ever found . Due to its simple
mechanism and high performance in global optimization, PSO
has been successfully applied to many optimization problems
[2]–[4]. Moreover, this new evolutionary computation tech-
nique, based on the movement and intelligence of swarms, has
shown better convergence characteristics than conventional
stochastic optimization methods such as genetic algorithms
(GAs) and simulated annealing [1], [4].

In recent years, there have been several attempts to apply PSO
to multimodal function optimization problems [5]–[7], which
find more than one optimum of a multimodal function. In our
previous study [7], we have proposed a new algorithm named
multi-grouped PSO (MGPSO) to apply PSO to the multimodal
function optimization problems. Contrary to the conventional
attempts for the multimodal PSO, MGPSO used multiple groups
which tracks their own best solution independently and thus
guaranteed that one can search ‘superior’ peaks of a mul-
timodal function when the number of groups is . In MGPSO,
we gave each a ‘territory’ which prevents other solutions
from intruding and introduced a concept called repulsive ve-
locity, in order to avoid overlapping of the discovered solutions.
This new approach, however, had a potential problem in that
the initial size of each group’s territory was set as an identical
value and the size was decreased as iteration number increased.
Therefore, if the size of the territory became too small before
sufficient convergence level, some groups could not find their
own peaks and wandered around other groups’ .

Digital Object Identifier 10.1109/TMAG.2007.914855

In the present paper, a new algorithm named auto-tuning
MGPSO (AT-MGPSO) is proposed in order to alleviate this
problem and guarantee robust convergence regardless of the
territory size. To implement AT-MPGSO, we have mimicked
herd instinct in ecosystem such as territorial dispute between
different groups and immigration of weak groups.

II. CONVENTIONAL MGPSO

In our previous study [7], we introduced a new concept named
repulsive velocity to encourage individual particles, located in
territory of the of other group, to escape from the other
groups’ territory in a more efficient manner. The velocity of a
particle was then updated according to the following:

(1)

where and are velocity and position of th particle in
ith group at th iteration, respectively. is of th
particle in ith group and is of th group. is the
repulsive coefficient, which has a zero value if the th particle
does not intrude a territory of other group’s . is
the of other group ( th group), of which the territory is
intruded by the th particle.

The fourth right-side term of (1) is the repulsive velocity com-
ponent. The role of this component is to push the particle out
from the territory of other group’s intruded by the particle.

Thanks to the concepts of territory and repulsive velocity,
MGPSO could find multiple optima in the solution space. More-
over, MGPSO had a unique advantage over the other algorithms
in that one can search ‘superior’ peaks of a multimodal func-
tion when the number of groups is [7].

III. PROPOSED AT-MGPSO

A. Auto-Tuning Territory

In MGPSO, the radii of all territories initially having iden-
tical size were decreased linearly from to zero as the iteration
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Fig. 1. A schematic illustration of auto-tuning territory of �����: ‘������’
is the ����� of group1. ‘������’ is the ����� of group2. (a) Before applying
auto-tuning territory; (b) after applying auto-tuning territory.

count increased [7], when this decrement rate was set prelimi-
narily by the users. However, the conventional algorithm had a
problem: if the sizes of the territory become too small before
sufficient convergence level, some groups may not find their
own peaks and wander around other groups’ , resulting
in unnecessary increment of the number of function calls. This
phenomenon obviously degraded the efficiency and robustness
of the algorithm.

To solve the problem, we propose a new technique to adjust
each territory’s radius automatically regardless of the iteration
count.

1) Competition: Starting from a relatively small initial size
of territory, a territory of a group increases its scope when the
fitness of the group’s is higher than that of its adjacent
group’s . Two groups can be considered to be ‘adjacent’
when their territories overlap with each other. The winner group
remains and it’s radius of territory increases by dividing it by
‘0.95’. The loser groups are expelled and reinitialized out of the
existing groups’ territories to search for other peaks in the so-
lution space, which is mimicking a territorial dispute between
different groups in ecosystem. The basic idea is such that a peak
with a broad scope of influence and high fitness has higher prob-
ability to be invaded by other groups because each group has a
characteristic of global optimization based on its own .

Simplified explanation on the process is illustrated in Fig. 1,
where two groups (group1 and group2) are assumed. The ‘ ’
represents initial territory. Since two territories overlap each
other, the region of group1 having better fitness (winner group)
is automatically increased to ‘ ’ to preserve its realm from in-
vasions. Loser group (group2) is expelled away from the region
and finally finds another peak in space [Fig. 1(b)].

Using this concept, each group’s territory size can be con-
trolled automatically and thus one can find other solutions
effectively.

Fig. 2. Flow chart of AT-MGPSO.

2) Initial Radius of Territory: In the conventional MGPSO
algorithm, the size of initial territory was set empirically as 5%
of entire solution range. However, it cannot be generally applied
to many practical cases since there can be variety of group num-
bers and solution spaces.

In this paper, we propose an efficient way to determine the
initial radius of a territory. Assuming that all superior peaks
are evenly distributed in the solution space , we decided the
initial size of territory by the following:

(2)

where and are size of solution space and number of dimen-
sion respectively. The ‘0.7’ is an empirical coefficient for the
territory size.

B. Immigration of Group

Since AT-MGPSO increases the size of each group’s territory,
all particles belonging to a certain group sometimes invade the
territories of the other groups. In such a case, we cannot define
the gbest of the group because we select the among the so-
lutions which are not included in any other groups’ territories. In
nature, it is obvious that a species failed to struggle for existence
should immigrate to other region for their survival. To mimic the
ecological phenomenon and to tackle the potential problem in
AT-MGPSO, we removed the ‘exterminated’ group which could
not evaluate its own from the solution space and regener-
ated a new group out of the existing groups’ territories.

The overall flowchart of AT-MGPSO including above expla-
nation is shown in Fig. 2.

IV. NUMERICAL TEST AND RESULT

To compare the performance of the proposed method with
conventional ones such as conventional MGPSO and niching
genetic algorithm (Niching GA) [8], a multimodal test function
was used. Each simulation consists of 50 iterations.

The formula of the test function, which is a linear summation
of single bell-shape functions, is

(3)
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Fig. 3. A test multimodal function.

TABLE I
OPTIMIZATION RESULTS OF TEST FUNCTION

where is number of peaks. and are width and value of
th peak. and are position of th peak. Fig. 3 shows an

example of the test function, where total number of peaks is 14
and all peaks’ widths and fitness values are set differently from
each other. The total number of groups and particles for both
AT-MGPSO and MGPSO is 14 and 15, respectively. And the
initial population number of Niching GA is 210.

Table I presents the simulation results. It is shown that the
proposed method reduces the number of function evaluation and
has high probability of success, compared to the other methods.

To observe the effect of the proposed technique, we applied
the conventional AT-MGPSO to the same test function when the
number of groups is 6. The process of the simulation is depicted
in Fig. 4. It can be seen that the proposed AT-MGPSO can find
six superior peaks without any scheduling for territory size re-
duction due to the proposed auto-tuning concept.

Fig. 5 shows the optimization process of the conventional
MGPSO. As seen in the figures, two groups are wandered
around one dominant peak having high fitness value and broad
width. Also they are not converged sufficiently due to the influ-
ence of repulsive velocity affecting each other. As a result, the
conventional MGPSO miss two superior solutions and waste
the computational time.

V. APPLICATION TO THE OPTIMAL DESIGN OF IPMSM

A. Objective Function and Design Variables

As a practical optimization example, interior perma-
nent-magnet synchronous motor (IPMSM) for 42 V Integrated
Starter-Generator (ISG) was selected. The initial structure of
the analysis model is presented in Fig. 6. The objective of the
optimal design to be maximized was defined by

(4)

Fig. 4. Optimization result using AT-MGPSO for a test function (� � �,
� � ��). Although some dominant peaks exist, AT-MGPSO can find 6 su-
perior peaks in this solution region. (a) Iteration 0; (b) iteration 10; (c) iteration
20; (d) iteration 30.

Fig. 5. Optimization result using MGPSO for a test function (� � �, � � ��).
Because territory of gbest is too small before convergence, two groups are wan-
dering around one peak having high fitness value and broad width. (a) Iteration
0; (b) iteration 10; (c) iteration 20; (d) iteration 30.

Fig. 6. Structure of an IPMSM (��, ��): magnet pole arc angle, (� , � ): layer
length.

where and are d- and q- axis inductances, and are
d- and q- axis currents, and is magnet flux linkage.
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TABLE II
CONDITIONS TO EXECUTE THE PROPOSED ALGORITHM

TABLE III
SPECIFICATION OF AN OBJECTIVE MOTOR

If the value of torque at starting is similar, solution with lower
total harmonic distortion (THD) of EMF, lower amplitude of
EMF and high saliency ratio is preferred. The torque can be eval-
uated by (5) and thus easily applied to the optimization process;
whereas the both THD of EMF and peak of EMF require ad-
ditional numerical computations and thus is hard to be applied
to the optimization process. Therefore, in this study, we first se-
lected several solutions which have high motor torque, and then
calculated the THD of EMF and peak of EMF only for the can-
didate solutions.

To protect inverter devices in case of the fault condition at the
maximum speed, magnet quantity should be constrained. Due
to the limit condition, we selected four parameters involved in
reluctance torque, which has an important role in increasing the
starting torque.

If the number of turns, slots, poles, air gap length, stator outer
radius and stacking length are fixed on constant values, two
magnet pole arc angles ( , ), two layer lengths (l1,l2) are
taken as design variables. The design variables are shown in
Fig. 6. Tables II and III are the basic conditions to execute the
MGPSO and the specifications of IPMSM, respectively.

B. Optimization Results

Table IV shows the three superior solutions optimized for
maximum motor torque. Then, the THD of EMF and peak of
EMF were evaluated for each candidate solution. From the table,
we can see that the case 1 is the best compromise solution be-
cause it has sufficiently high starting torque, compared to the
other solutions, small EMF, and low THD of EMF.

TABLE IV
OPTIMIZATION RESULTS

VI. CONCLUSION

In the present paper, an improved optimization algorithm
named AT-MGPSO was proposed for efficient multimodal
function optimizations. Using the new concept of territorial
dispute in ecological phenomenon, the AT-MGPSO could find
multiple peaks effectively in solution space even where object
function is asymmetrical.

The usefulness of AT-MGPSO was verified by the applica-
tion to a test multimodal function and an optimal design of
IPMSM, the results of which demonstrated that the proposed
method is promising for multimodal electromagnetic optimiza-
tion problems.
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