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Abstract: This study invesitigated the feasibility of measuring directional 
coupling between cortical areas with near-infrared spectroscopy (NIRS). 
Cerebral hemodynamic responses were recorded at the primary 
somatosensory cortex (S1), secondary somatosensory cortex (S2), and 
primary motor cortex (M1) regions of the rat barrel cortex during electrical 
stimulation of rat whiskers. Deoxyhemoglobin concentration changes were 
calculated from NIRS recordings and the Granger causality based on the 
multivariate autoregressive (MVAR) model was used to estimate the 
effective causal connectivity among S1, S2, and M1. The estimated 
causality patterns of seven rats showed consistent unidirectional coupling 

between the somatosensory areas and the motor areas (S1 and S2 → M1), 
which coincided well with our hypothesis because the rats’ motor function 
was completely anesthetized. Our preliminary results suggest that cortico-
cortical directional coupling can be successfully investigated with NIRS. 
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1. Introduction 

Classical functional neuroimaging studies have focused on the functional mapping of brain 
areas, but they could provide only a limited amount of information on the underlying neuronal 
processes. Recently, many neuroscientists have become interested in describing how different 
brain areas communicate with each other since such information might help to understand the 
organized networks of cortical regions [1–13]. The interactions between different cortical 
areas, usually referred to as functional connectivity, can be measured by linear or nonlinear 
analyses of time series extracted from noninvasive brain imaging techniques such as 
functional magnetic resonance imaging (fMRI), high-resolution electroencephalography 
(EEG), electrocorticography (ECoG), and magnetoencephalography (MEG). Recent advances 
in brain signal analyses have enabled us to estimate directional coupling between cortical 
areas [1–10] beyond the conventional synchronization analysis based on simple correlation 
calculations [11–13]. 

Directional coupling is sometimes referred to as causality, effective connectivity, or 
functional causality. Various algorithms to measure the directional coupling between different 
brain areas have been proposed and applied to both hemodynamics-based (fMRI) and 
electrophysiology-based (EEG, MEG, and ECoG) modalities. Among many algorithms, 
dynamic causal modeling (DCM) and multivariate autoregressive (MVAR) modeling have 
been the most widely used. DCM first assumes an underlying brain network model, regions of 
interests, and a priori connectivity probabilities, then estimates the effective connectivity 
values between the brain regions using stimulus functions describing experimental 
manipulations and measured time series as the inputs and outputs of the dynamic system, 
respectively. DCM has been successfully applied to fMRI studies [1,2] and EEG/MEG studies 
[3,4], mostly associated with cognitive tasks. However, DCM has a disadvantage in that it 
requires strong a priori assumptions on the number of directional connections and their 
directionality, which are difficult to validate in practical neuroimaging studies. On the 
contrary, an MVAR-based modeling technique called “Granger causality” does not require 
any a priori assumptions on the connectivity models. Granger causality, proposed by Granger 
in 1969 [14], infers directional influence between two cortical areas by quantifying 
improvement of prediction in one area by additional information of the other area. We can 
judge whether there exists the Granger causality from ‘X’ to ‘Y’ if the past information from 
both time series can significantly improve the prediction of the future of ‘Y’ rather than using 
the past information from ‘Y’ alone. The future time series have been usually estimated using 
MVAR modeling [5]. Directed transfer function (DTF) and partial directed coherence (PDC) 
are frequency domain versions of Granger causality and have been generally applied to 
EEG/MEG time series analyses. During the last decade, MVAR-based modeling has been 
extensively applied to functional neuroimaging studies based on fMRI [6,7], EEG [8], MEG 
[9], and ECoG [10]. The MVAR-modeling-based causality analysis is now being applied to 
clinical neuroscience as well as to cognitive neuroscience and several articles in these fields 
have already been published [15,16]. 

Near-infrared spectroscopy (NIRS) is a relatively new functional imaging modality in 
neuroscience. It uses NIR light to non-invasively estimate various functional parameters of a 
brain such as cerebral blood volume and tissue oxygenation by measuring absorption changes 
caused by hemoglobin level changes. Recently, NIRS has been actively applied to functional 
brain imaging [17,18], clinical neurophysiology [19,20] and cognitive neuroscience studies 
[21,22]. NIRS has some advantages over other neuroimaging modalities in that it provides a 
relatively high temporal resolution, it is cheap to build, and is easily maintained. Despite these 
advantages, NIRS studies have focused only on classical functional neuroimaging and has not 
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been widely used for investigating cortico-cortical directional coupling. Causality estimation 
with NIRS would have an advantage over the EEG or MEG-based analyses since it is not 
necessary to solve inverse problems, which are indispensable for EEG/MEG-based analyses 
because EEG or MEG topographies are not directly attributed to the underlying cortical 
regions [23]. Aydöre et al. [24] first applied the MVAR-based causality estimation method to 
NIRS data. They demonstrated the feasibility of investigating functional connectivity with 
NIRS. In their experiment, the functional connectivity of the prefrontal cortex showed close 
relevance to the cognitive load, indirectly suggesting that the functional connectivity 
information estimated from NIRS data is physiologically meaningful. 

In this study, we report another strong piece of evidence demonstrating that the cortico-
cortical directional coupling can be investigated with NIRS. We applied the Granger causality 
method to frequency-domain NIRS data recorded from the rat brain during whisker 
stimulation and estimated the directional coupling among primary somatosensory cortex (S1), 
secondary somatosensory cortex (S2), and primary motor cortex (M1). 

2. Materials and methods 

2.1 Animal preparation 

All animal preparation and experimental protocols followed the institutional guidelines of 
Korea University. Seven adult female rats (Sprague-Dawley, 210-280 g) were anesthetized 
with urethane (20%, 1.25 g/kg body weight, i.p.) and mounted on a stereotaxic frame. Prior to 
surgery and optical recording, the rat was tested to ensure the lack of motor response. 
Following a one-inch middle incision, the scalp was clearly removed and skull was exposed. 

For the NIRS recordings, we defined coordinates of the S1 (anterior-posterior: −2.0 mm, 

lateral: + 3.0 mm), S2 (anterior-posterior: −1.0 mm, lateral: + 6.0 mm) and M1 (anterior-
posterior: + 2.0 mm, lateral: + 4.0 mm) area from bregma point on the right hemisphere [25]. 
In order to stimulate the whole whisker, two biostimulator needle electrodes (Bcotron, 
Digitalstimulator BDS 301, South Korea) were inserted at B4 and E1 sites of the left whisker 
area [26]. 

2.2 NIRS and biostimulator setup 

A commercial eight-channel frequency-domain NIRS system (Imagent, ISS, Il., U.S.A.) was 
used to measure the cerebral hemodynamic responses to whisker stimulation. This system 
uses two wavelengths (690 nm, 830 nm), and each channel contains two optical fibers with 
400 µmcorediameter (FT-400EMT, Thorlabs, N.J., U.S.A) for 690 nm and 830 nm. The 
optical fibers are arranged as shown in Fig. 1(a) and the picture of the actual experiment is 
shown in Fig. 1(b). The source-detector separation for each channel was approximately 5 – 6 
mm and the corresponding penetration depth is estimated as 1.5 – 2 mm, which is sufficient to 
cover the cortex area [27]. After the optical fibers are placed at appropriate lications, dental 
cement (Ketac Cem, 3M, U.S.A) was applied to the rat skull to maintain a constant boundary 
condition between optical fibers and skull [28,29]. The NIRS signals were recorded at 30 Hz 
sampling rate. The rat whisker was stimulated for 10 s with 10 Hz, 10 V electrical pulse 
trains, followed by 90 s of resting time for recovery, as shown in Fig. 2. These procedures 
were repeated approximately 40-60 times. 
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Fig. 1. (a) Arrangement of optical fibers (L1, L2, L3 are the locations of the source fibers and 
D represents a detector). M1, S1 and S2 represent primary motor cortex, primary 
somatosensory cortex and secondary somatosensory cortex, respectively. (b) Picture of the 
actual experiment. 

 

Fig. 2. The paradigm of electrical stimulation. Pulses at 10 Hz repetition rate lasted for 10 s and 
the resting time was set for 90 s. This process was repeated approximately 40-60 times. 

2.3 Calculation of hemoglobin concentration 

A modified Beer-Lambert law was used to calculate the oxy- (HbO2) and the deoxy-
hemoglobin (Hbr) concentrations as in a previous study [30]: 
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where OD is the optical density, IFinal is the measured light intensity, IInitial is the initial light 
intensity, ε represents the extinction coefficients of the oxy- and the deoxy-hemoglobin, B is 
the differential path-length factor, L is the source-detection separation, and λ is the wavelength 
of light (690 nm and 830 nm). Using the calculated ∆OD

λ
, we can obtain ∆[HbO2] (oxy-

hemoglobin concentration) and ∆[Hbr] (deoxy-hemoglobin concentration) with the following 
equations: 
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In this study, deoxyhemoglobin data was used to analyze the directional coupling of 
cortical areas because it is generally agreed that the concentration of deoxyhemoglobin is 
more tightly coupled to the fMRI BOLD signals [31,32], of which the causality analyses have 
already been studied in detail [1,2,6,7]. 

2.4 Granger causality 

The directional coupling was estimated by computing the Granger causality [14] between 
each pair of time series acquired from different locations on the rat brain surface. The simplest 
way to exploit this technique is to use the linear prediction of the future values of data xt and yt 
with an autoregressive model, under the assumption that xt and yt are vectors of deterministic 
variables. The value of a time series x at a time slice t, xt, can be estimated using the following 
two different methods: 

 0

1

,
M

t p t p t

p

x x uα α −

=

= + +∑   (4) 

 0

1 1

,
M M

t p t p p t p t

p p
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= =
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where α and β are the AR-matrix coefficients, p is the model order, ut represents the 
uncorrelated Gaussian random variables with mean zero in a univariate signal, wt represents 
the uncorrelated Gaussian random variables with mean zero in the multivariate signal. M is 
the maximal model order, which was determined by using the Bayesian Information Criterion 
(BIC) [33]. If yt causes xt, the prediction error obtained from univariate modeling, ut, should 
be larger than that obtained from multivariate modeling, wt. In this study, the Granger 
causality is evaluated using [34] 

 0 1

1

( ) /
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RSS T M
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where T is the number of observations. To assess the statistical significance of the estimated 
Granger causality, we adopted the F-test with null hypothesis, H0: βp = 0, that is, yt does not 
influence the generation of xt. If βp = 0 for all p = 1, 2, …, M, the Granger causality value F 
becomes zero as RSS0 equals RSS1. On the contrary, if the null hypothesis is rejected, that is, F 
is sufficiently large; we can conclude that yt causes xt. The test for the hypothesis is performed 
using a traditional F-test resulting from an ordinary least squared regression for each equation. 
To test the statistical significance of F, the cumulative F distribution is estimated first [35] 
and then the probability of the F value is calculated by p = 1 – CDF(F), where CDF 
represents the cumulative distribution function and is estimated using the ‘cdf’ function 
implemented in Matlab 7.6 (Mathworks, U.S.A), where p represents the probability of the 
Granger causality. For example, p = 1 means that there exists no causal interaction between 
the two time series; whereas p = 0 means that there is a strong directional influence from yt to 
xt. We rejected the null hypothesis when the probability p is less than 0.05. 

The above concepts can be readily expanded to multivariate cases by exploiting an MVAR 
model. MVAR coefficients were calculated using a multivariate linear regression method 
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called ordinary least squares [36]. The signals applicable for the Granger causality analysis 
must be covariance-stationary, which means that the input signals maintain consistent mean 
and variance [36]. In the case of non-stationary signals, we applied first-order differentiation 
to the signals repeatedly until the signals become stationary [37]. For more detailed 
information on the implementation of the Granger causality method, please refer to the 
literatures [7–9,14,34]. 

3. Results 

With the NIRS signals obtained from seven rat brains, we calculated the deoxyhemoglobin 
concentration using Eq. (3). Figure 3 shows an example of temporal changes of the 
deoxyhemoglobin concentration acquired from a rat (rat no. 5) when electrical pulse trains at 
10 Hz were applied for 10 s. Data were acquired from three different locations, S1, S2, and 
M1 as demonstrated in Fig. 1, and they showed clear hemodynamic responses to the electrical 
stimuli. The tendency of signal changes look similar between three locations, but we cannot 
infer any causal interactions or time delays simply by visual inspection. 

We evaluated the Granger causality based on the MVAR model for each of the trials. 
Window size for the causality evaluation was set to be 30 s starting from the stimulation onset 
time (0 s). According to Schlögl’s study [38], the accuracy of the MVAR estimation is 
somewhat dependent on the number of time samples and the variance of the prediction error 
becomes smaller than 10% of the signal variance if the number of samples is larger than 70. It 
was also suggested that different MVAR estimators do not show significant differences for 
sufficiently large number of samples (N > 400). In the present study, we used 900 samples for 
the MVAR estimation; therefore, we believe that our MVAR estimation should be sufficiently 
accurate. 

 

Fig. 3. Representative plots of changes in deoxyhemoglobin concentration at the (a) S1, (b) S2, 
and (c) M1 locations on the right hemisphere of a rat brain. 10 Hz pulse trains lasted for 10 s. 
The negative offset of all the signals is part of the physiological noise, which is not meaningful. 

The probability values of the Granger causality, p, were then evaluated for 6 connections 

(S1 → M1, M1 → S1, S1 → S2, S2 → S1, S2 → M1, M1 → S2) and averaged for all trials. 
Figure 4 shows the averaged probability values of the 7 rats, where the strength of the Granger 
causality is presented using the mean probability values, different arrow colors, and different 
arrow thicknesses. Although some individual differences in the p-value level are observed, the 
causal interaction patterns look similar and consistent. Such individual differences in p-values 
are believed to be originated from several factors such as different signal-to-noise ratio, 
slightly different sensor locations, different anesthetic depths, and so on. When p = 0.05 was 
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used to assess statistical significance, all the results showed statistically significant Granger 

causality values for S1 → M1 connections and 6 out of 7 rats showed meaningful Granger 

causality for S2 → M1. Most rats did not show statistically significant causality values of the 

opposite directional connections (M1 → S1 and M1 → S2), except for one case (rat 5, M1 → 
S2), which will be discussed later. In all cases, directional coupling from the somatosensory 
cortex to the motor cortex dominated the opposite directional coupling. We also estimated the 
Granger causality values of the NIRS data acquired from the same rats during the resting 
period and could not find any consistent directional couplings. 

Since the rats were fully anesthetized to suppress their neuromuscular function, the 
feedback somatosensory activation originating from motor action was reduced and rarely 
affected the NIRS signals recorded at the somatosensory areas. According to the Petersen’s 
report [39] describing rat’s anatomical structure, long-range, glutamatergic, cortico-cortical 
synaptic connections exist between S1 and S2 as well as between S1 and M1, but the direct 
anatomical connection between S2 and M1 had not been reported. However, since the 
connectivity or causality estimation relies on the recorded neuronal signals, the functional 
connectivity patterns estimated for EEG and fMRI time series using either Granger causality 
or DTF do not necessarily coincide with the known anatomical connectivity [5–7]. Therefore, 
in the sense of the functional connectivity, it can be said that both S1 and S2 activities caused 
the activation of M1. 

 

Fig. 4. The averaged Granger causality (probability) values of seven rats. The strength of the 
Granger causality is presented using the probability values, arrow colors, and arrow 
thicknesses. Smaller probability values, thicker arrows, and darker colors represent stronger 
causality along the direction. Each p-value was averaged from 40 – 60 trials. 

In our experiment, the causal interactions between S1 and S2 did not show consistent 
directional connectivity patterns, preventing us from making any conclusions. We believe that 
the anatomical distance between the two areas (S1 and S2) is so close that the 
deoxyhemoglobin concentration changes on one area may have contaminated those on another 
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area due to the limited spatial resolution of the NIRS recordings. Since the anatomical 
distance between somatosensory areas (S1 and S2) and M1 is relatively larger than that 
between S1 and S2, the causal interactions between the somatosensory areas and the motor 
area could be observed clearly. 

4. Discussion 

We have investigated if the cortico-cortical directional coupling in the rat brain could be 
estimated with NIRS. MVAR-based Granger causality estimation was applied to frequency-
domain NIRS data recorded from seven rat brains during electrical stimulation of whiskers, 
and estimated the directional connectivity among S1, S2, and M1 locations on the right 
hemisphere [Fig. 1(a)]. The estimated causality patterns showed consistent directional 
coupling between the somatosensory cortex and the motor cortex, suggesting that the cortico-
cortical causal interactions can be investigated with NIRS recordings. In our experiment using 
seven rats, the directional connectivity from S1 or S2 to M1 was observed for the majority of 

the cases (13 out of 14 connections). The opposing directional connection (rat 5, M1 → S2) 
was observed only for one case. 

Recent neuroanatomy studies related to the functional mechanism of the rat barrel cortex 
[40,41] have shown that the primary somatosensory barrel cortex is tightly interconnected 
with the ipsilateral secondary somatosensory cortex and ipsilateral primary motor cortex. 
Since callosal projections have been reported to be less prominent than other connections 
[39], inter-hemispheric connections were not considered in this study. 

Motor-to-somatosensory connections may be observed when the rats’ motor functions 
were not fully anesthetized or if the anesthetic depth was shallow. Since we could not use a 
device to monitor the anesthetic depth, we simply applied the dose in proportion to their body 
weights. We believe that the opposite directional connectivity from M1 to S2 may be related 
to the depth of anesthesia. More sophisticated experiments using indices measuring the depth 
of anesthesia such as arterial oxygen saturation and arterial blood pressure will be performed 
in our future studies. 

Various methods have been proposed to estimate the directional coupling among 
simultaneously recorded neural signals, including hemodynamic responses. DTF and PDC 
have been extensively applied to EEG and MEG time series analyses [5], but such frequency 
domain analysis methods are not adequate to be applied to hemodynamics-based modalities 
such as fMRI and NIRS, of which specific frequency components or frequency bands are not 
generally meaningful. The Granger causality used in this study has been the most widely used 
measure to estimate the directional coupling among fMRI BOLD signals acquired at different 
regions of interest. Recently, entropy transfer (or directed information transfer: DIT) [42] and 
phase slope index (PSI) [43] have been proposed to quantify the direction coupling. Although 
the new indices have not been sufficiently verified, they can be nice alternatives to solve the 
‘stationary’ problem of the MVAR-based methods. We plan to apply these new indices to our 
NIRS data sets in future experiments and compare the results with this study. 

An important clinical application of the cortico-cortical directional coupling estimation 
has been the localization of epileptogenic sources. Ding et al. [15] applied an EEG source 
localization algorithm called first principal vectors (FINEs) algorithm to ictal EEG data and 
investigated causal interactions among the source time series to estimate ictal onset zones and 
propagation patterns, which can be used as important information for pre-surgical evaluations. 
However, to investigate ictal propagation with EEG, inverse problems should be solved 
because the EEG topographies do not directly reflect the underlying brain activities. To solve 
the EEG inverse problems, complex pre-processing procedures such as artifact rejection, 
manual or semi-automatic head model generation, etc. are required. Moreover, ictal EEG data 
are generally highly contaminated by muscle artifacts, making it difficult to estimate accurate 
neuronal source locations. Difficulty in estimating the number of EEG sources is also one of 
the crucial problems of EEG dipolar source localization. 

On the other hand, NIRS data directly reflect the underlying cortical activity changes and 
are relatively more resilient against muscle artifacts since light propagation does not interfere 
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with electrical signals caused by muscle excitation. NIRS provides hemodynamic information 
rather than the electrical information, allowing for an extended recording time and can be 
recorded simultaneously with EEG [44]. Therefore, the NIRS-based causality analysis can be 
a promising tool for noninvasively estimating ictal propagation patterns if simultaneously 
recorded EEG data are used to determine ictal onset [45]. 
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