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a b s t r a c t

In the present study, we propose a neurofeedback-based motor imagery training system for EEG-based
brain–computer interface (BCI). The proposed system can help individuals get the feel of motor imagery
by presenting them with real-time brain activation maps on their cortex. Ten healthy participants took
part in our experiment, half of whom were trained by the suggested training system and the others did
not use any training. All participants in the trained group succeeded in performing motor imagery after a
series of trials to activate their motor cortex without any physical movements of their limbs. To confirm the
effect of the suggested system, we recorded EEG signals for the trained group around sensorimotor cortex
while they were imagining either left or right hand movements according to our experimental design,
before and after the motor imagery training. For the control group, we also recorded EEG signals twice
without any training sessions. The participants’ intentions were then classified using a time–frequency
analysis technique, and the results of the trained group showed significant differences in the sensorimotor

rhythms between the signals recorded before and after training. Classification accuracy was also enhanced
considerably in all participants after motor imagery training, compared to the accuracy before training. On
the other hand, the analysis results for the control EEG data set did not show consistent increment in both
the number of meaningful time–frequency combinations and the classification accuracy, demonstrating
that the suggested system can be used as a tool for training motor imagery tasks in BCI applications.
Further, we expect that the motor imagery training system will be useful not only for BCI applications,

appi
but for functional brain m

. Introduction

There are a great numbers of disabled individuals who can-
ot freely move or control specific parts of their body because of
erious neurological diseases such as amyotrophic lateral sclero-
is (ALS), brainstem stroke, and so on. Brain–computer interfaces
BCIs) can help them to drive and control external devices using only
heir brain activity, without the need for physical body movements
Wolpaw et al., 2002).

Diverse types of electrical brain activities have been used to
ealize electroencephalography (EEG)-based BCI systems, e.g., mu
hythm (Blankertz et al., 2007; Chatterjee et al., 2007; Kamousi et
l., 2007; Pfurtscheller et al., 2006; Pineda et al., 2003), slow corti-
al potential (Birbaumer et al., 1999), event-related p300 (Bayliss,
003; Hoffmann et al., 2008), and steady-state visual evoked poten-
ial (Lalor et al., 2005; Middendorf et al., 2000). Among these

ctivities, the one most widely used to monitor brain activities for
CI applications has been the mu(�) rhythm, which is related to
otor actions (Blankertz et al., 2007; Galan et al., 2008; Neuper

t al., 2003; Pfurtscheller et al., 2003). The mu rhythm can be

∗ Corresponding author. Tel.: +82 33 760 2792; fax: +82 33 763 1953.
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ng studies that utilize motor imagery tasks as well.
© 2009 Elsevier B.V. All rights reserved.

voluntarily modulated by individuals unlike event related brain
activities.

Motor imagery, defined as mental simulation of a kinesthetic
movement (Decety and Inqvar, 1990; Jeannerod and Frak, 1999),
can also modulate mu rhythm activities in the sensorimotor cor-
tex without any physical movements of the body. It has been well
established that the imagination of each left and right hand move-
ment results in event-related desynchronization (ERD) of mu-band
power in the contralateral sensorimotor areas, which is also the
case for physical hand movements (Lotze et al., 1999; Pfurtscheller
and Neuper, 2001). Brain activities modulated by motor imagery
of either the left or right hand are regarded as good features for
BCIs, because such activities are readily reproducible and show con-
sistent EEG patterns on the sensorimotor cortical areas (Hollinger
et al., 1999; Pfurtscheller and Neuper, 1997). Moreover, thanks
to the contralateral localization of the oscillatory activity, the
activities evoked from left and right hand motor imagery are, com-
paratively, readily discriminated (Ince et al., 2006; Kamousi et
al., 2007; Model and Zibulevsky, 2006). However, many individ-

uals have difficulty in getting used to the feel of motor imagery
, since most people do not easily recognize how they can have a
concrete feeling of motor imagery and tend to imagine the images
of moving their hands or legs instead (Neuper et al., 2005). There-
fore, one of the challenging issues in the EEG-based BCI studies has

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:ich@yonsei.ac.kr
dx.doi.org/10.1016/j.jneumeth.2009.01.015
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een how one can efficiently train individuals to perform motor
magery tasks.

Over the last decade, various feedback methods for motor
magery training have been proposed, most of which are based on
isual (Blankertz et al., 2007; Leeb et al., 2006; Pineda et al., 2003) or
uditory feedbacks (Hinterberger et al., 2004; Nijboer et al., 2008).
or example, suppose that a participant is instructed to perform
motor imagery task involving their left or right hand. Then, ref-

rence features of brain activities evoked from the left and right
and motor imagery are extracted and the participant’s intentions
re classified by comparing the reference features with the current
eatures. The participants are then provided with visual or audi-
ory feedback according to the classification results. However, some
articipants cannot generate more useful features in their sensori-
otor cortex after motor imagery training processes, compared to

he features extracted before the training (Blankertz et al., 2007;
offmann et al., 2008; Nijboer et al., 2008). One typical reason to
xplain the wrong motor imagery is that participants tend to imag-
ne visual images of the movement (visual-motor imagery: VMI),

hich generates a type of brain activity pattern completely different
rom that of actual motor imagery (Neuper et al., 2005). There-
ore, even when participants attempt the same motor imagery task,
ndividual differences are often observed, because the results are
ependent on their feelings and perception on the motor imagery
ask, as described by Annett (1995).

The goal of the present study was to develop a motor imagery
raining system that can help individuals easily get the feel of

otor imagery. To this end, we developed a kind of neurofeed-
ack systems to train motor imagery by presenting participants
ith time-varying activation maps of their brain, using a real-time

ortical rhythmic activity monitoring system that we recently intro-
uced in a previous study (Im et al., 2007). The real-time cortical
ctivity monitoring system could visualize spatiotemporal changes
f cortical rhythmic activity of a specific frequency band on a sub-
ect’s cortical surface, rather than the subject’s scalp surface, with

high temporal resolution. In our experiment, half of 10 human
olunteers, who had no prior experience of BCI experiments, were
sked to imagine either left or right hand movement while they
ere watching their cortical activation maps through the real-time
onitoring system. During the experiment, the participants were

sked to continuously try to increase their mu rhythm activations
8–12 Hz) around the sensorimotor cortex areas. We then investi-
ated changes in the EEG signals recorded before and after motor
magery training to demonstrate the effect of our motor imagery
raining system. The other five control subjects did not had any

otor imagery training and the changes in the EEG signals recorded
efore and after a 30-min break were investigated.

. Materials and methods

Our experiments consisted of two sessions: motor imagery
raining session and EEG recording sessions. In the motor imagery
raining session, the participants were trying to increase their mu
hythm activations around the sensorimotor cortex while they
ere watching their cortical activation maps through the real-time

hythmic activity monitoring system. Two EEG recordings were per-
ormed each before and after the motor imagery training session to
emonstrate the effect of our neurofeedback-based motor imagery
raining system.

.1. Subjects and environment of experiments
Ten healthy volunteers (all male, all right handed, age 25.1 ± 1.97
ears) took part in this study. None of the participants had a previ-
us history of neurological, psychiatric, or other severe disease that
ay otherwise influenced the experimental results. We gave a fully
ce Methods 179 (2009) 150–156 151

detailed summary of the experimental procedures and protocols
to each of the participants before the experiment. All participants
gave written consent and received adequate reimbursement for
their participation. The study protocol was approved by the Institu-
tional Review Board (IRB) committee of Yonsei University in Korea.
None of the participants had previous background knowledge or
experience with BCIs, nor had they ever participated in any EEG
experiment. All experiments were conducted in the Bioelectromag-
netics and Neuroimaging Laboratory of Yonsei University.

Electrodes were attached on the participants’ scalp according
to the extended international 10–20 system. In the motor imagery
training session, the EEG signals were acquired at 16 electrode loca-
tions (AF3, FC3, C3, CP3, PO3, FCz, Cz, CPz, AF4, FC4, C4, CP4, PO4, T7,
T8, and Oz) using a multi-channel EEG acquisition system (WEEG-
32, Laxtha Inc., Daejeon, Korea) in a dimly lit, soundproof room. In
the EEG recording sessions, the EEG signals were recorded at 15
electrode locations (Cz, C1, C2, C3, C4, CPz, CP1, CP2, CP3, CP4, FCz,
FC1, FC2, FC3, and FC4) covering the sensorimotor area, using the
same recording system. The sampling rate was set at 256 Hz in all
experiments with a sensitivity of 7 �V. Facial EMG and EOG were
also recorded during the EEG recordings and used as references in
artifact rejection process.

We used different electrode configurations for the motor
imagery training and the EEG recording sessions. In the training ses-
sion, we used 16 electrodes broadly attached on the participants’
scalp because we needed to monitor their brain activity patterns
in the whole brain areas including the sensorimotor cortex. On
the other hand, in the EEG recording sessions, 15 electrodes were
focally attached around their sensorimotor cortex as we were only
interested in EEG signals related with motor functions.

2.2. Motor imagery training

During the motor imagery training session five volunteers (EK,
GS, DK, KS, and JN) were made to sit on a comfortable armchair
facing a 17′′ monitor and were presented with time-varying maps
of their cortical rhythmic activity that were updated every 350 ms
while they were attempting either left or right hand motor imagery.
Fig. 1 shows screenshots of the experiment, where the subject
EK activated his motor cortex without any physical movements of
his hands (see Supplementary movie file). Before the training, we
explained to the participants the locations of the sensorimotor cor-
tex and provided them with a movie that explained the expected
cortical activation changes. The participants were then instructed
to continuously attempt to generate cortical activations around the
sensorimotor cortex. In the beginning of the training session, all
participants failed to generate brain activities around the senso-
rimotor cortex; however, through repetitive trials, all participants
succeeded in generating brain activity on their sensorimotor cortex
without any physical movements. Participants were given 30 min
for the motor imagery training.

2.3. An EEG-based real-time cortical rhythmic activity
monitoring system

An EEG-based real-time cortical rhythmic activity monitoring
system (Im et al., 2007), which was used in the training session,
consisted of pre-processing and real-time processing parts. In the
pre-processing part of the experiment, an inverse operator was
constructed in which the subject’s anatomical information was
reflected. In the present study, a standard brain atlas (Evans et al.,

1992) provided by the Montreal Neurological Institute (MNI) and
a standard configuration of electrodes were utilized, since individ-
ual magnetic resonance imaging (MRI) data for the subjects were
not available. Once the linear inverse operator had been constructed
and saved to a data-storage unit, spatiotemporal changes of cortical
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ig. 1. Screenshots of real-time cortical mu rhythm activity (8–12 Hz) monitoring. Th
round the sensorimotor cortex by imagining his left or right hand movement (see Su
as performing motor imagery (right).

hythmic activates were monitored in real-time by means of a uni-
ed processing scheme consisting of three independent programs:
n FFT program, a frequency domain minimum norm estimation
FD-MNE) solver, and a 3D visualization program, which were all
xecuted sequentially at each time slice (Im et al., 2007).

.4. EEG data acquisition

EEG data were acquired before and after the training session to
onfirm the effect of our motor imagery training system. The whole
xperiments including the neurofeedback training and the two EEG
ecordings were conducted on the same day. For the control group
articipants (JI, BK, HJ, TI, and SJ), EEG data were recorded twice
ith a 30-min break time. Fig. 2 shows the experimental paradigm
sed for the EEG recordings in the present study. First, we used a
ray (RGB: 132, 132, 132) background, and after presenting a blank
creen for 3 s, a circle with a black-and-white checkerboard pattern
ppeared randomly on either the left or right side of the screen for
ext 0.25 s, indicating which hand movement the participant was
o imagine. After a 1 s preparation time (blank screen), the letter ‘X’
ppeared at the center of the screen for 0.25 s, at which time, the

articipant was asked to perform either the left or right hand motor

magery as indicated. This procedure was repeated 180 times: when
0 trials were performed for the right hand motor imagery, the
ther 90 trials were performed for the left hand motor imagery.

ig. 2. The experimental paradigm used for EEG recording: after presenting a blank
creen for 3 s, a circle with a black-and-white checkerboard pattern appeared ran-
omly on either the left or right side of the screen for the next 0.25 s, indicating
hich hand movement the participant was to imagine. After a 1 s preparation time

blank screen), the letter ‘X’ appeared at the center of the screen and lasted for 0.25 s.
t that time, the participant was to being performing either left or right hand motor

magery. The time period used for the data analysis (3.0 s) is depicted in the figure.
ticipant (EK) was instructed to continuously attempt to generate cortical activations
entary movie). A cortical activation map at rest state (left) and when the participant

To confirm if the participants physically moved their hands, we
also recorded an electromyogram (EMG) from electrodes attached
on the participants’ both forearms (Wolpaw and McFarland, 2004)
during the EEG recording sessions. Fig. 3 shows the changes of
EMG powers recorded both before and while the participants of
the trained group were performing the motor imagery task. No sig-
nificant difference between the two EMG data sets (less than 10%
variations) were found for all five participants, indicating that they
did not move their hands when they were attempting to perform
the motor imagery task.

2.5. EEG data analysis

We used the 3.0 s time segment marked in Fig. 2 for the data
analysis because the participant might start the motor imagery
before the letter ‘X’ appeared (Ince et al., 2006, 2007; Kamousi et al.,
2007). After data acquisition, the raw EEG signals were converted
to a common average reference (CAR) to compensate for common
noise components. The CAR method has been shown to produce
good performance in noise reduction along with surface Laplacian
filtering (Hjorth, 1975; McFarland et al., 1997). EEG epochs highly
contaminated by facial muscle movements were rejected manually
by inspecting the simultaneously recorded facial EMG signals. EOG
artifacts were not removed since the influence of eye blinks or eye-
ball movements upon the EEG channels around the sensorimotor
area was not significant.

For the time–frequency analysis we used fourth order Butter-
worth band-pass filters in which the span of the frequency band
was 2 Hz with a 50% overlapping. The selected frequency bands
were 6–30 Hz, including mu and beta bands, which are related to
limb movements. After calculating the envelopes of the signals at
each frequency bin, a moving average filter was applied to the time
domain signals at 400 ms intervals (50% overlapping) to smooth the
envelopes. After all, the frequency band and time series were evenly
divided into 23 frequency bins and 14 time segments, respectively.
We then obtained a time–frequency pattern map by integrating the
enveloped signals at each time segment and frequency bin. Two-
tailed t-tests were then applied to every possible combination of

frequency bins, time segments, and electrodes in order to find com-
binations that produced significant differences (p < 0.05) between
left and right hand motor imagery.

To evaluate the classification accuracy, the two time–frequency
combinations that had the smallest p-value in the time–frequency
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meaningful changes of brain activities occurred in all participants
of the trained group after the training session. On the other hand, for
the control group, we could not observe any consistent changes in
the number of significant time–frequency combinations between

Table 1
The total number of time–frequency combinations showing a significant difference
between left and right hand motor imagery.

Trained group Control group

Participant Before After Participant First Second

EK 220 300 JI 219 207
GS 280 308 BK 269 217
DK 183 275 HJ 379 384
KS 297 446 TI 508 312
ig. 3. Changes in EMG power recorded at both of the participants’ forearms befo
etween the two EMG data sets (two-tailed paired t-test, p < 0.05) was found for all
ands when they were attempting to perform the motor imagery task. A, B, C, D, and

n the figures, ‘before’ and ‘during’ represent ‘before the motor imagery’ and ‘during

attern maps were selected for each participant. Among the 180
rials (90 each for right and left hand motor imagery), 90 trials (45
ach for right and left hand motor imagery) were randomly selected
nd used as a training set, while the remaining motor imagery trials
ere used as a test set for calculating the classification accuracy. For

ach trial of the test set, Euclidean distances from the two average
eature vectors computed on the reference data sets (45 right and
5 left hand motor imagery trials each) were compared and the
rial was assigned to a class based on whichever had the shorter
istance.

. Results

.1. Changes in brain activity after motor imagery training

Fig. 4 shows the time–frequency pattern maps for the trained
roup participants, where the black colored blocks represent
ime–frequency combinations that showed significant differences

p < 0.05) between left and right hand motor imagery. As seen in
he figures, where two featured electrodes were selected for each
articipant, the time–frequency pattern maps did not show any dis-
inguished features before the training session. On the contrary, we
bserved that the number of the ‘black’ blocks was increased and
during performing the motor imagery task. No statistically significant difference
articipants of the trained group, indicating that the participants did not move their
cate the EMG power changes of each participant, EK, GS, DK, KS, and JN, respectively.

otor imagery,’ respectively.

the blocks were clustered around the sensorimotor rhythm (around
10 and 20 Hz) after the training session. Table 1 shows the number
of time–frequency combinations that showed significant difference
between left and right hand motor imagery, demonstrating that
JN 275 349 SJ 412 547

‘Before’ and ‘After’ represent the number of significant features obtainable before
the motor imagery training and after the motor imagery training, respectively. ‘First’
and ‘Second’ represent the number of significant features obtainable in the first and
second EEG recording sessions, respectively.
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Fig. 4. Time–frequency pattern maps at the two electrode locations. The black colored blocks represent the time–frequency combinations that showed statistically significant
difference (p < 0.05) between left and right hand motor imagery tasks. The time–frequency pattern maps did not show any distinguishable features before the training session,
while the number of the ‘black’ blocks increased and the blocks were clustered around the mu rhythm (around 10 and 20 Hz) after the training session. ‘Before’ and ‘after’
represent the time–frequency patterns calculated before the training session and those calculated after the training session, respectively.
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he first and second EEG data sets. From these results, we confirmed
hat it was possible to train participants to generate specific brain
ctivity patterns on the sensorimotor cortex using the proposed
ystem.

.2. Classification accuracy before and after the motor imagery
raining

We also investigated the changes in classification accuracy
efore and after motor imagery training. Table 2 shows the accuracy
f classifying left and right hand motor imagery of all participants.
ince small p-values in the time–frequency pattern maps meant
hat there were significant differences between the left and right
and motor imagery, we selected two time–frequency combina-
ions having smallest p-values as the features for classifying left
nd right hand motor imagery. We found that most of the extracted
eatures corresponded to the mu rhythm which had been used in
he neurofeedback training session (frequency bin and electrode in
ach subject of the trained group—EK: 11–13 Hz in FC1 and 11–13 Hz
n C4; GS: 10–12 Hz in FC1 and 9–11 Hz in FC2; DK: 13–15 Hz in FC4
nd 13–15 Hz in C2; KS: 12–14 Hz in C3 and 11–13 Hz in C2; JN:
–9 Hz in C2 and 9–11 Hz in CP3).

A simple Euclidean distance algorithm was then used to esti-
ate classification accuracy. Analysis of the results indicated that

he classification accuracy was enhanced considerably for all five
ndividuals in the trained group after the motor imagery training;

hile the analysis results for the control EEG data set did not show
onsistent increment in the classification accuracy, demonstrating
hat the proposed motor imagery training system could be used
o enhance the performance of motor-imagery-based BCI systems.
hese results have a thread of connection with those of the previ-
us time–frequency analysis, in that the individuals of the trained
roup were able to generate distinguishable brain activity patterns
etween the left and right hand motor imagery after a short training
ession that lasted for 30 min.

To test if the number of features affects the computed classifica-
ion accuracy, we applied different numbers of features to the same
lassification algorithm (from 3 to 5 features). The use of more fea-
ures enhanced the classification accuracy in most cases, but the
ifference was not significant and did not affect the findings of our
tudy.

. Discussions and conclusions

For motor imagery training we used a real-time cortical rhyth-
ic activity monitoring system (Im et al., 2007) that visualizes
ource activation maps on the cortical surface, rather than the scalp
urface, to show the subjects their time-varying brain activities. The
ain reason why we chose to use the ‘cortical’ activity monitoring

ystem was that EEG topographies cannot be directly attributed

able 2
hanges in classification accuracy before and after motor imagery training (or
rst and second EEG recordings in control group). We first selected the two
ime–frequency combinations that had the smallest p-values as the features for clas-
ifying left and right hand motor imagery. A Euclidean distance algorithm was then
sed to estimate the classification accuracy.

rained group Control group

articipant Before (%) After (%) Participant First (%) Second (%)

K 60 77 JI 57 52
S 62 67 BK 60 54
K 59 72 HJ 73 70
S 58 72 TI 67 75

N 55 69 SJ 64 66

ean 58.8 71.4 Mean 64.2 63.4
ce Methods 179 (2009) 150–156 155

to the underlying cortical regions. In BCI applications, different
types of EEG topographies can be observed even for identical motor
imagery tasks (McFarland et al., 2000) because the EEG topography
is dependent on neuronal source orientations. Since most partic-
ipants of motor imagery experiments are not familiar with EEG
topographies, the use of inverse solutions could help them easily
perform motor imagery training.

Many studies have reported the importance and usefulness of
motor imagery in various applications such as learning complex
motor skills in sports (Murphy, 1994) and re-learning motor skills
in clinical applications (Dijkerman et al., 2004). Ever since Jastrow’s
first study of mental simulation (Jastrow, 1892), motor imagery, a
kind of mental process, has been widely used for learning motor
skills and enhancing players’ performance in sports science. Indeed,
mental imagery, including motor imagery, has been demonstrated
to be a central factor for motor skill acquisition and execution
(Murphy, 1994). Motor imagery has been also been used to diag-
nose and rehabilitate brain-injured patients (Owen et al., 2006;
Tamir et al., 2007). For example, Tamir et al. (2007) applied motor
imagery to patients with Parkinson’s disease for improving their
motor function, and found that the combination of motor imagery
and physical practice is more effective than conventional physical
training methods, especially for reducing bradykinesia. Although in
the present study we applied our proposed motor imagery train-
ing system to a noninvasive BCI application, we expect that it can
be applied to other applications, including those described above,
in order to help the individuals get the feel of the motor imagery
task and consequently, thereby enhancing efficiency of the relevant
studies.

The average classification accuracy in the trained group was
71.4% after the motor imagery training, which, although relatively
low compared to values reported in the literatures concerning sim-
ilar motor imagery classification (Ince et al., 2006, 2007; Kamousi
et al., 2007; Leeb et al., 2006; Wang et al., 2004) was still thought
to be an acceptable level for practical BCI applications according to
Perelmouter and Birbaumer’s report (Perelmouter and Birbaumer,
2000). Nonetheless, the increment of the classification accuracy
was thought to be meaningful enough to confirm the effect of our
neurofeedback-based motor imagery training, considering that the
main purpose of the classification was not to obtain a high classifi-
cation accuracy, but rather to show how efficiently we were able to
train subjects, who were unable to have a concrete feeling of motor
imagery, to perform the motor imagery task.

In the present study, we focused on training motor imagery of
both hands. According to the literature, imagery of feet and tongue
(or mouth) movements can be also used as effectors in EEG-based
BCI systems (Pfurtscheller et al., 2006). Further, it has been reported
that the mu rhythm is blocked or desynchronized at sensorimo-
tor cortex during hand movement imagery, whereas it increases
during foot or tongue motor imagery (Pfurtscheller et al., 2006).
In the same study, it was also reported that EEGs recorded during
left hand, right hand, foot, and tongue motor imagery are classifi-
able. Based on the previous report, it seems that subjects should
be able generate distinguishable brain activity patterns of four or
more effectors using our motor imagery training system, an exciting
prospect that we will focus on in future studies.

In our neurofeedback-based motor imagery training system, we
confined mu rhythm to 8–12 Hz frequency band, but the frequency
band of mu rhythm may vary from one individual to another. For-
tunately, in our experimental study, all participants succeeded in
generating brain activity around their sensorimotor cortex in the

neurofeedback training session with the typical frequency band.
However, if the training session fails, the experimenter can adjust
the frequency band (e.g. 13–15 Hz) and repeat the training session.

In the present study, we confirmed the effect of our
neurofeedback-based motor imagery training system by comparing
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wo EEG data sets each recorded with a cue-based (or synchronized)
CI paradigm before and after the motor imagery training. Since
synchronous (or self-paced) BCI systems are becoming popular in
ecent years, we will apply our motor imagery training system to
uch systems in our future studies. In addition, we are planning
o compare our training method with other conventional training

ethods in the near future.
In summary, we developed a type of neurofeedback systems that

an help individuals to get the feel of motor imagery by presenting
hem with real-time cortical activation maps on their sensorimotor
ortex. Importantly, all of the study participants succeeded in gen-
rating brain activation around the sensorimotor cortex during the
raining session. The EEG data recorded after the motor imagery
raining showed significant enhancement in both the number of

eaningful features and the classification accuracy, demonstrat-
ng the efficiency of our motor imagery training system. Lastly, we
xpect that the proposed motor imagery training system will be
seful not only for BCI applications, but also for functional brain
apping studies relevant to motor imagery tasks.
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