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Auditory evoked potential could 
reflect emotional sensitivity and 
impulsivity
Ji Sun Kim1, Sungkean Kim1,2, Wookyoung Jung1, Chang-Hwan Im2 & Seung-Hwan Lee1,3

Emotional sensitivity and impulsivity could cause interpersonal conflicts and neuropsychiatric 
problems. Serotonin is correlated with behavioral inhibition and impulsivity. This study evaluated 
whether the loudness dependence of auditory evoked potential (LDAEP), a potential biological 
marker of central serotonergic activity, could reflect emotional sensitivity and impulsivity. A total 
of 157 healthy individuals were recruited, who performed LDAEP and Go/Nogo paradigms during 
electroencephalogram measurement. Barratt impulsivity scale (BIS), Conners’ Adult ADHD rating scale 
(CAARS), and affective lability scale (ALS) were evaluated. Comparison between low and high LDAEP 
groups was conducted for behavioural, psychological, and event-related potential (ERP) measures. The 
high LDAEP group showed significantly increased BIS, a subscale of the CAARS, ALS, and false alarm 
rate of Nogo stimuli compared to the low LDAEP group. LDAEP showed significant positive correlations 
with the depression scale, ALS scores, subscale of the CAARS and Nogo-P3 amplitude. In the source 
activity of Nogo-P3, the cuneus, lingual gyrus, and precentral gyrus activities were significantly 
increased in the high LDAEP group. Our study revealed that LDAEP could reflect emotional sensitivity 
and impulsivity. LDAEP, an auditory evoked potential could be a useful tool to evaluate emotional 
regulation.

Individual personality traits such as emotional sensitivity and impulsivity could cause social conflicts, which can 
undesirably be manifested in criminal behavior or violence1. In addition, emotional dysregulation and impulsive 
behavior are deeply involved with various neuropsychiatric problems2. To verify the aversive issues related to 
emotional sensitivity and impulsivity, researchers have attempted to evaluate the associated traits.

Loudness dependence of the auditory evoked potentials (LDAEP) was calculated as the amplitude change of 
the evoked N1/P2 component in response to different auditory stimulus intensities3. LDAEP has been identified 
to be inversely associated with central nervous system serotonergic activity4, and has been proposed as a reliable 
indicator of central serotonin activity in humans5. In clinical studies, Fitzgerald et al.6 reported that MDD patients 
with melancholic features (i.e., lack of mood reactivity) had a significantly weaker LDAEP slope, whereas our 
previous study showed stronger LDAEP values in atypical depression7. While, previous studies reported that 
individuals who were sensitive to external stimuli have stronger emotional responses8, the specific relationship 
between emotional sensitivity and LDAEP has not been clarified yet.

Meanwhile, impulsivity has been defined as the lack of ability to refrain inappropriate behavior and clinically, 
has been regarded as the inability to inhibit behavioral response9. Recent meta-analysis reported that the compo-
nents of event-related potential (ERP) of Go/Nogo tasks were associated with response inhibition10. For example, 
Nogo-N2 has been suggested to reflect a variety of cognitive control processes that underlie response inhibition, 
including response activation11, premotor inhibition12, and most importantly, conflict monitoring13; Nogo-P3 has 
been proposed to primarily reflect the inhibitory process itself11. In the Nogo trials, the P3 component, has been 
linked with the process of response inhibition14. Especially, N2 and P3 components, and accuracy rate from the 
Nogo task have mainly changed in patients with impulse control problems such as trichotillomania, antisocial 
personality disorder and Attention Deficit Hyperactivity Disorder (ADHD)15–17. Both Nogo-N2 and P3 ERP 
component have been regarded to reflect impulsivity, however the interpretation of the changes in N2 and P3 
ERP is inconclusive18. Furthermore, previous studies revealed that poor performance of Nogo could be related to 
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low serotonin function and genetic mutation of serotonin system19,20, suggesting that serotonin function might 
be related with Nogo trials and that serotonin might play a core role among behavioral inhibition and LDAEP21. 
Previous studies directly pointed out that LDAEP was stronger in more impulsive individuals22. Despite the plau-
sible relationship between LDAEP and impulsivity reflected by Go/Nogo paradigm, there have been no studies 
investigating the association between LDAEP and Nogo ERP in the general population.

Hence, we hypothesized that individuals with high LDAEP would demonstrate higher emotional sensitivity 
and impulsivity (Fig. 1). The first aim of the present study was to verify the relationship between LDAEP and 
emotional sensitivity measured by psychological scaling. The second aim of the study was to evaluate the rela-
tionship between LDAEP and impulsivity (impulsivity rating scales and Nogo-N2, P3). Finally, we explored the 
regional activity of the brain through source activity analysis of the Nogo ERP. It would support our hypothesis by 
verifying that brain regions known to be related with response inhibition activate in coherence with the change 
of the Nogo ERP.

Results
Psychological and Behavioural measures. Table 1 displays comparisons of the demographic and psy-
chological characteristics between participants in the low and high LDAEP groups. The women vs. men ratio of 
the high LDAEP group was higher, than that of the low LDAEP group (p =  0.01). Scores of the Barratt impul-
sivity scale (BIS) (attentional impulsivity & motor impulsivity), Conners’ Adult ADHD rating scale (CAARS) 
(impulsivity/emotional lability), and affective lability scale (ALS) (depression/elation & anger) were significantly 
greater in the high LDAEP group compared to the low LDAEP group. Beck depression inventory (BDI) and ALS 
(anxiety/depression) were marginally significantly greater in the high LDAEP group compared to the low LDAEP 
group.

There was no significant difference in the average reaction time (376.55 vs. 375.65 ms, F =  0.910, df =  1, 
p =  0.34), and hit rate (0.94 vs. 0.93 ms, F =  0.075, df =  1, p =  0.78) in the Go condition between the low and high 
LDAEP groups. However, there was a significant difference in the false alarm rate of Nogo stimuli between the 
two groups (0.11 vs. 0.15, F =  6.184, df =  1, p =  0.01) (Table 1, Fig. 2).

Electroencephalogram Data. Figure 3(A) presents the LDAEP waveforms at Cz in low and high LDAEP 
groups. Figure 3(B) presents the Go and Nogo ERP waveforms at FCz electrodes.

Loudness dependence auditory evoked potentials (LDAEP). The subjects were divided into two subgroups 
based on the median LDAEP (= 0.98) at the Cz electrode: the low group (n =  78, 0.56 ±  0.37) and the high group 
(n =  79, 1.53 ±  0.43). The peak-to-peak N1/P2 amplitudes for the five sound intensities of the low LDAEP group 
were 60 dB: 6.61 ±  2.24; 70 dB: 7.12 ±  2.55; 80 dB: 8.13 ±  2.60; 90 dB: 8.28 ±  2.52; 100 dB: 8.82 ±  2.59 μ V, and the 
peak-to-peak N1/P2 amplitudes for the five sound intensities of the high LDAEP group were 60 dB: 6.89 ±  2.84; 
70 dB: 8.10 ±  2.83; 80 dB: 9.84 ±  3.24; 90 dB: 11.14 ±  3.42; 100 dB: 13.00 ±  3.28 μ V.

Go/Nogo condition. Because there were no group differences for latencies of N2 and P3 components across the 
Go and Nogo stimuli, the following analysis focused on the amplitude of each component.

In the N2 amplitude, there was a significant main effect of condition (F =  21.477, df =  1, p <  0.001). The main 
effect of electrode site was also significant (F =  12.681, df =  3, p <  0.001). Post-hoc analysis revealed that the N2 
amplitudes of Fz and FCz were greater (more negative) than those of Cz and Pz. Importantly, the two-way inter-
action of group x condition was significant (F =  7.456, df =  1, p =  0.007). However, post-hoc analysis revealed that 
there was no significant difference between two groups in both Go and Nogo conditions.

In the P3 amplitude, there was a significant main effect of group (F =  10.838, df =  1, p =  0.001). The main 
effects of condition and electrode site were significant (F =  23.163, df =  1, p <  0.001; F =  9.866, df =  3, p <  0.001, 

Figure 1. Study hypothesis. Loudness dependence of the auditory evoked potential (LDAEP) could reflect 
sensitivity and Go/Nogo reflects impulsivity, and both have shared serotonin related regulation. We hypothesize 
that LDAEP might be correlated with emotional sensitivity such as depression, anxiety, and mood lability. 
Moreover, LDAEP would be correlated with impulsivity, which would reflect response error, and fast speed.
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respectively) as well. Post-hoc analysis revealed that the P3 amplitudes of FCz and Cz were greater than Fz and Pz. 
Although there was no significant interaction, all the three factors (group, condition, and electrode site) showed 
significant main effect and a simple main effect analysis was performed to check if there was a group difference 
in the Go and Nogo conditions. The simple main effect analysis indicated that both amplitudes of Go-P3 and 
Nogo-P3 were significantly lower in the low LDAEP group than in the high LDAEP group regardless of the elec-
trode sites.

Correlation analysis. LDAEP was significantly correlated with psychological measures related to emotion-
ality such as BDI (r =  0.235, p =  0.003), ALS total score (r =  0.229, p =  0.004) (Fig. 4A), the depression/elation 
subscale (r =  0.248, p =  0.002) and the anxiety/depression of the ALS (r =  0.175, p =  0.029), and anger (r =  0.165, 

Low LDAEP High LDAEP

pMean ± SD or N (%)

Age (years) 27.33 ±  6.16 28.25 ±  6.59 0.45

Sex

 Male 36 (46.2) 21 (26.6) 0.01

 Female 42 (53.8) 58 (73.4)

Education (years) 14.40 ±  1.77 14.44 ±  1.77 0.77

Go reaction time (ms) 376.55 ±  25.45 375.65 ±  25.57 0.34

Go hit rate 0.94 ±  0.07 0.93 ±  0.08 0.78

Nogo false alarm rate 0.11 ±  0.08 0.15 ±  0.11 0.01

Barratt Impulsivity Scale (BIS) 58.10 ±  9.34 61.11 ±  9.10 0.04

 Attentional impulsivity 15.58 ±  3.14 16.72 ±  3.71 0.04

 Motor impulsivity 24.37 ±  4.95 25.96 ±  4.20 0.05

 Non-planning impulsivity 18.15 ±  3.54 18.43 ±  3.99 0.50

State Anxiety Inventory (SAI) 35.58 ±  8.61 37.61 ±  7.35 0.16

Trait Anxiety Inventory (TAI) 38.12 ±  10.05 41.16 ±  9.55 0.09

Beck Depression Inventory (BDI) 6.81 ±  5.48 8.84 ±  5.90 0.06

Behavioral Activation System 36.50 ±  7.29 34.59 ±  3.90 0.10

Behavioral Inhibition System 21.28 ±  2.53 21.29 ±  1.99 0.69

Conners’ Adult ADHD rating scale (CAAR) 73.42 ±  13.94 76.90 ±  15.42 0.26

 Inattention/Memory 23.95 ±  6.31 25.57 ±  6.85 0.21

 Hyperactivity restlessness 17.91 ±  4.65 18.73 ±  4.73 0.25

 Impulsivity/Emotional lability 17.46 ±  4.11 18.92 ±  4.66 0.04

 Problem with self-concept 14.10 ±  3.08 13.67 ±  2.87 0.35

Affective Lability Scale (ALS) 13.56 ±  10.14 18.58 ±  9.25 0.01

 Depression/Elation 5.46 ±  4.12 7.75 ±  3.97 0.003

 Anxiety/Depression 4.86 ±  4.46 6.48 ±  4.29 0.07

 Anger 3.24 ±  2.60 4.35 ±  2.35 0.01

Table 1.  Comparison of baseline demographic, psychological, and behavioural characteristics in 
participants with low and high loudness dependence of the auditory evoked potential (LDAEP) (N = 157, 
low = 78, high = 79).

Figure 2. (A) The reaction time of Go between the low and high loudness dependence of the auditory evoked 
potential (LDAEP) groups. (B) The false alarm rate of Nogo between the two groups. The x-axis of each figure 
denotes the duration of Go/Nogo task. The mean and standard error of the mean are presented. * represents a 
statistically significant difference between the two groups (p <  0.05).
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p =  0.041). The previous studies revealed that the FCz electrode showed the greatest P3 amplitude and stronger 
N2 correlation compared to those of other electrodes23,24. In addition, the FCz showed robust findings in both 
N2 and P3 amplitudes in this study. Based on these findings, for the correlation between LDAEP and ERP, the 
FCz electrode was used for analysis to avoid the multiple comparisons. LDAEP was also significantly correlated 
with impulsivity measures such as impulsivity/emotional lability (r =  0.177, p =  0.027) of CAARS and Nogo-P3 
amplitude at the FCz (r =  0.217, p =  0.007) (Fig. 4B). In addition, the false alarm rate of Nogo condition showed a 
significant positive correlation with the total score of BIS (r =  0.166, p =  0.038), and Nogo-N2 latency at the FCz 
electrode (r =  0.185, p =  0.021) (Fig. 4C).

Source P300 of Nogo condition. Source analysis of the Nogo-P3 revealed increased source densities of 
the cuneus (BA 17), lingual gyrus (BA 17, 18), and precentral gyrus (BA 6) in the high LDAEP group (p <  0.05; 
Fig. 5) compared to the low LDAEP group. Detailed information on the statistical values and voxel coordinates 
is provided in Table 2.

Discussion
This study investigated whether nonclinical adults with higher LDAEP show higher emotional sensitivity and 
higher impulsivity. First, the high LDAEP group showed higher emotional sensitivity measured by psychological 
scaling. Second, the high LDAEP group showed increased Nogo false alarm rate, and increased BIS score com-
pared to the low LDAEP group. The LDAEP values were significantly correlated with BIS score and Nogo-P3 
amplitude. Additionally, the source activity of the Nogo P300 revealed significantly greater activation of the 
cuneus, lingual gyrus, and precentral gyrus in the high LDAEP group compared to those in the low LDAEP 
group.

As we hypothesized, the LDAEP values were correlated with BDI and ALS. The high LDAEP group also 
showed higher depressive symptom scores and affective lability than the low LDAEP group. Our results show 
that the level of LDAEP is closely related with emotional sensitivity, and reflect “mood reactivity or fluctuation 
tendency” in healthy participants. Similarly, a previous clinical study revealed that LDAEP is significantly related 
to the mood reactivity in patients with major depressive disorder25. These evidences suggest that LDAEP might 
be a marker for the emotional sensitivity not only in the clinical condition, but also in the general population.

The BIS scores of the high LDAEP group was higher than that of the lower group. The high LDAEP group 
showed significantly lower accuracy rate for Nogo trials as well. Additionally, the false alarm rate of Nogo was 
positively correlated with the BIS in this study. In previous studies, the false alarm (commision error) rate of Nogo 
has been known to be closely related to response inhibition26,27 and also associated with trait impulsiveness as 
measured by BIS18,28. These evidences suggest that high LDAEP would demonstrate higher impulsivity related to 
impulsivity scale and false alarm rate for Nogo trials.

Interestingly, post hoc revealed no significant difference between the two groups for both Go and Nogo con-
ditions in the Go/Nogo-N2 amplitude, even though there was a significant two-way interaction of group x con-
dition. However, we found that the degree of amplitude changes from Go condition to Nogo condition was larger 

Figure 3. (A) Grand averages of loudness dependence of the auditory evoked potential (LDAEP) event-related 
potentials (ERPs) at the Cz electrode for the low and high LDAEP groups. (B) Grand averages of Go ERPs and 
Nogo ERPs at the FCz electrode between the low and high LDAEP groups. (C) Scalp topographies of Go/Nogo 
N2 and P3 components between the two groups.
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in the high LDAEP group than in the low LDAEP group; the high LDAEP group showed lower Go-N2 ampli-
tude and increased Nogo-N2 amplitude than the low LDAEP group. Smaller amplitude of Go-N2 may mirror 
decreased attention resources allocated to the competing stimuli17. Considering that Nogo-N2 is widely accepted 
to be relevant to conflict monitoring13, this increased Nogo-N2 amplitude in the high LDAEP group might reflect 
a compensatory mechanism that prevents less efficient conflict monitoring. Therefore, the increased degree of 
amplitude changes between Go and Nogo conditions in the high LDAEP group might indicate that less attention 
resource would be allocated to the competing stimuli and this would lead to weaker conflict monitor in the high 
LDAEP group than in the low LDAEP group.

As we expected, LDAEP was positively correlated with Nogo-P3 amplitude and Nogo-P3 amplitude was sig-
nificantly higher in the high LDAEP group compared to the low LDAEP group. Previous studies suggest that the 
Nogo-P3 amplitude is related to impulsivity16,29. Hartman et al.26 insisted that diminished Nogo-P3 might be an 
indicator for poor response inhibition. Nogo-P3 components showed reduction of the amplitudes in juvenile 
delinquents with antisocial personality characteristics17, patients with ADHD16, and borderline personality dis-
order30. In contrast, people with internet addiction disorder exhibited higher Nogo-P3 amplitude than controls29. 

Figure 4. (A) The loudness dependence of the auditory evoked potential (LDAEP) showed a significant 
correlation with emotional scale scores such as Beck Depression Inventory (BDI), and Korean version of 
Affective Lability Scale (ALS) scores. (B) LDAEP showed significant correlation with impulsivity measures 
such as impulsivity/emotional lability subscale score of adult attention-deficit hyperactivity disorder (ADHD) 
scale, and Nogo P3 amplitude at FCz. (C) The false alarm rate of Nogo showed a significant correlation with 
impulsivity measures such as Barratt Impulsivity Scale (BIS) score and Nogo-N2 latency at FCz.
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The increased Nogo-P3 in non-clinical individuals with high impulsivity reflect the need for enhanced inhibitory 
effort or the degree of cognitive endeavors in order to yield equal performance compared to that of low impulsive 
individuals14,29,31. Moreover, Benvenuti et al.18 commented that high impulsive individuals may require an greater 
effortful response inhibition in order to counteract the prepotent tendency to respond, which is elicited by the 
combination of high trait impulsiveness and high emotional arousal. This increased P3 amplitude might reflect 
a protective or compensatory mechanism that prevents the premature response or poor impulse control in high 
LDAEP group.

People with high sensory processing sensitivity are described to reflect an increased sensitivity of the cen-
tral nervous system and a deeper cognitive processing of physical and emotional stimuli32. Considering that 
the higher LDAEP might be related to higher sensory sensitivity, these individuals could better respond to the 
positive and negative stimuli with higher reactivity. As a result, higher reactivity to negative stimuli could cause 
depressive mood or anxiety related to emotional sensitivity. On the other hand, the more sensitive individuals, 
with heightened positive emotions in response to rewarding stimuli, might be associated to the “openness” on the 
five basic personality dimension33.

Meanwhile, a previous study using functional magnetic resonance imaging reported that healthy subjects 
with higher impulsivity have a similar influence on the neuronal correlates of the coding of sound intensity 
and show more activation of auditory evoked potential than subjects with low impulsivity34. In the study, high 
impulsive subjects are presumed to show a greater serotonergic responsiveness, representing lower levels of ser-
otonin, causing a higher auditory evoked activity in the primary auditory cortex, which is correlated with the 
loudness-dependent change of the extent of fMRI activation32. The underlying mechanism has not been clarified 
yet, LDAEP in the primary auditory cortex is positively correlated to “novelty seeking”35 and it might be related 
to impulsive choice related to the serotonergic responsiveness.

In the source activity of Nogo ERP, the precentral gyrus (BA 6), lingual gyrus and cuneus showed stronger acti-
vation in the high LDAEP group compared to the low LDAEP group. The precentral gyrus is related to motor con-
trol and plays a critical role in inhibiting inappropriate prepotent response tendencies in motor process36–39. The 
lingual gyrus is one of the activated regions in error processing and response inhibition in healthy controls37,40.  
The Left cuneus is one of the activated regions during response inhibition task in healthy control as well as 
patients with schizophrenia41,42. Activation of these regions during response inhibition task could be interpreted 
as an increased demand for more inhibitory efforts and resources. It suggests that the high LDAEP group need 
more effortful impulse control compared to the low LDAEP group.

Figure 5. Differences in the source activity of Nogo P300 between the low and high loudness dependence of the 
auditory evoked potential (LDAEP) groups in three regions: (A) cuneus, (B) lingual gyrus, and (C) precentral 
gyrus.

ROI (structure) BA

MNI coordinates Talairach coordinates

tX Y Z X Y Z

Cuneus 17 − 10 − 85 5 − 10 − 82 9 4.15*

Lingual Gyrus 17 − 10 − 90 0 − 10 − 87 4 4.48**

Precentral Gyrus 6 − 40 − 10 35 − 40 − 8 33 3.91*

Table 2.  Brain regions showing significant differences of Nogo-P3 source activity between low and high 
LDAEP groups. Voxels showing maximum difference in the same structure are listed. Source activity of the 
listed areas was significantly increased in high LDAEP group. **p <  0.01; *p <  0.05.
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There are some limitations in this study. First, the gender ratio was different between the high and low LDAEP 
groups. To overcome gender effects, we used partial correlation in LDAEP related analysis. Secondly, the present 
study lacked structured interview that screen healthy participants. Finally, our results may not be generalized to 
the clinical subjects. Further studies would be needed to evaluate pathophysiology of the clinical samples.

To our knowledge, this is the first study to show the relationship between LDAEP and Go/Nogo ERP reflecting 
impulsivity in non-clinical participants of large sample sizes. Consistent with our hypothesis, LDAEP was associ-
ated with emotional sensitivity and impulsivity. The source analysis of Nogo ERP supports our hypothesis. These 
evidences suggest that LDAEP is a useful tool to evaluate emotional regulation such as emotional sensitivity and 
impulsivity in healthy individuals.

Method
Participants. This study was approved by the Institutional Review Board and Ethics Committee of Inje 
University Ilsan Paik Hospital and all experimental protocols were approved by the committee (2015-07-026-001).  
The study was performed in accordance with approved guidelines. Informed consent was obtained from all study 
participants. The study was performed on 157 non-smoking healthy volunteers (57 men and 100 women) with a 
mean age of 27.80 ±  6.37 (years). Participants were recruited from the local community through local newspapers 
and posters. Participants with any history of neurological or other mental diseases, and smoking history within 
2 years were excluded from the study through the initial screening interviews. Each participant had normal or 
corrected to normal vision, as determined by checking visual acuity with the Snellen chart43.

Psychological measures. Psychological measures and scales were conducted to measure emotional sensi-
tivity and impulsivity. To evaluate emotional sensitivity, Beck Depression Inventory (BDI)44 State-Trait Anxiety 
Inventory (STAI)45 and Korean version of Affective Lability Scale (KALS)46,47 were applied. BDI is a validated 
scale composed of 21-items for measuring the severity of depressive symptoms44. Each BDI question was scored 
from 0–3, with higher scores indicating greater depressive symptom severity. The State-Trait Anxiety Inventory 
(STAI) is a commonly used tool that measures trait and state anxiety45. It includes the state anxiety inventory 
(SAI) and the trait anxiety inventory (TAI), which are comprised of 20-items each45. The 18-item ALS, which 
measures individual proneness to rapid shifts from the different emotional states of anxiety, depression, anger, 
and hypomania46, was also evaluated. The ALS is based on a three factor model of affective lability (depression/
elation, anxiety/depression, and anger)48.

To assess impulsivity related traits, Barratt Impulsiveness Scale (BIS)49,50, Conners’ Adult ADHD rating scale 
(CAARS)51, Behavioral Activation System, and Behavioral Inhibition System52,53 were applied. The BIS consists 
of 11 questionnaires and is designed to assess the personality/behavioural construct of impulsiveness. The BIS 
has three second-order factors (attentional, motor, and non-planning impulsiveness)50. The CAARS is designed 
to assess the manifestations of ADHD in adults, and is composed of 42 items that are divided into four sub-
scales including inattention/memory, hyperactivity/restlessness, impulsivity/emotional lability, and problems 
with self-concept51. Behavioral Activation System and Behavioral Inhibition System Questionnaires were used to 
measure self-reported dysregulation of behavioural activation and inhibition.

Electroencephalogram (EEG) Acquisition and Analysis. During the EEG task, each participant  
was tested in a sound-attenuated EEG room. EEG was acquired using a NeuroScan SynAmps amplifier 
(Compumedics USA, E1 Paso, TX, USA) with 64 Ag-AgCl electrodes mounted on a Quik Cap using an extended 
10–20 placement scheme. The ground electrode was located on the forehead and the physically linked reference 
electrode was attached to both mastoids. The vertical electrooculogram (EOG) was positioned above and below 
the left eye and the horizontal EOG was recorded at the outer canthus of each eye. The impedance was kept below 
5 kΩ. All data were processed with a 0.1–100 Hz band pass filter and sampled at 1000 Hz.

The recorded EEG data were preprocessed using CURRY 7. Gross artifacts, such as artifacts caused by move-
ments, were rejected through visual inspection by a trained person with no prior information regarding the 
origin of the data. Artifacts related to eye movement or eye blinks were removed using the mathematical proce-
dure implemented in the preprocessing software54. The data were filtered using a 0.1–30 Hz bandpass filter and 
epoched from 100 ms pre-stimulus to 900 ms post-stimulus. The epochs were subtracted from the average value 
of the pre-stimulus interval for baseline correction. If any remaining epochs contained significant physiological 
artifacts (amplitude exceeding ± 75 μ V) in any of the 62 electrode sites, they were excluded from further analy-
sis. Only artifact-free epochs were averaged across trials and participants for ERP analysis. For analysis of Go/
Nogo task, only correctly responded epochs were used. The number of epochs of LDAEP used for the analysis 
did not significantly differ between the low and high LDAEP groups (60 dB: 185.22 ±  15.20 vs. 183.15 ±  16.29, 
p =  0.413, 70 dB: 184.41 ±  15.91 vs. 182.29 ±  17.30, p =  0.426, 80 dB: 184.27 ±  16.49 vs. 183.18 ±  16.27, p =  0.677, 
90 dB: 185.38 ±  15.19 vs. 182.19 ±  17.13, p =  0.218, 100 dB =  184.47 ±  15.14 vs. 182.54 ±  17.17, p =  0.456). The 
number of epochs of Go/Nogo used for the analysis did not significantly differ between the low and high LDAEP 
groups (Go condition: 209.05 ±  21.37 vs. 208.35 ±  23.09, p =  0.845, Nogo condition: 49.37 ±  5.97 vs. 47.38 ±  7.34, 
p =  0.064).

Loudness dependence auditory evoked potentials (LDAEP). Auditory stimulation included 1000 stimuli with 
an inter stimulus interval that was randomized between 500 and 900 ms. Tones of 1000 Hz and 80-ms duration 
(10-ms rise and 10-ms fall) were presented through MDR-D777 headphones (Sony, Tokyo, Japan) at five inten-
sities: 60, 70, 80, 90, and 100 dB SPL. These stimuli were generated by E-Prime software (Psychology Software 
Tools, Pittsburgh, PA, USA). For each subject, the N1 peak (most negative peak between 50 and 200 ms from the 
stimulus) and the P2 peak (most positive peak between 150 and 300 ms from the stimulus) were then determined 
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at the Cz electrode55,56 for the five intensities. The peak-to-peak N1/P2 amplitudes were calculated for the five 
stimulus intensities and the LDAEP was calculated as the slope of the linear regression.

Go/Nogo experiment. Subjects were seated approximately 60 cm away from a computer screen (Mitsubishi, 
22-inch CRT monitor). Stimuli for Go/Nogo task, which consisted of numbers 1–8, were randomly presented on 
the screen. The subjects were instructed to press the spacebar as accurately and quickly as possible when the Go 
stimuli (even numbers: 2, 4, 6, 8) appeared at the centre of the screen and not to respond when the Nogo stimuli 
(odd numbers: 1, 3, 5, 7) were displayed. There were 300 trials, which consisted of Go (80% probability) condition 
and Nogo (20% probability) condition. On each task trial, a fixation cross was presented for 100 ms. Following 
intervals of 700–1000 ms, Go or Nogo targets appeared for 500 ms, and then, there was a 500 ms interval before 
the next trial. These stimuli were generated by E-Prime software (Psychology Software Tools, Pittsburgh, PA, 
USA). In the Go condition, the N200 (the most negative peak between 150 and 350 ms after stimulus onset) and 
the P300 (the most positive peak between 250 and 500 ms after stimulus onset) were investigated at the Fz, FCz, 
Cz, and Pz electrodes. In the Nogo condition, the N200 (the most negative peak between 150 and 350 ms after 
stimulus onset) and the P300 (the most positive peak between 300 and 550 ms after stimulus onset) were investi-
gated at the Fz, FCz, Cz, and Pz electrodes.

Source activity analysis. Standardized low-resolution brain electromagnetic tomography (sLORETA) is 
one of the representative source imaging methods for solving EEG inverse problem57. sLORETA assumes that 
the source activation of a voxel is similar to that of the surrounding voxels for calculating a particular solution, 
and applies an appropriate standardization of the current density. sLORETA was used to compute the cortical 
distribution of the standardized source current density of each ERP component. The lead field matrix was com-
puted using a realistic head model segmented based on the Montreal Neurological Institute (MNI) 152 stand-
ard template, in which the three-dimensional solution space was restricted only to the cortical gray matter and 
hippocampus58. The solution space was composed of 6,239 voxels with 5 mm resolution. Anatomical labels such 
as Brodmann areas (BAs) are provided by using an appropriate transformation from MNI to Talairach space59.

The source images of N2 and P3 were analyzed in Nogo condition, and the time frames used to calculate the 
N2 and P3 source images were defined between 150 and 350 ms and between 300 and 550 ms after stimulus onset, 
respectively.

Statistical Analysis. Multivariate ANOVA (MANOVA) was used to compare the scores of psychological 
and behavioural data between low and high LDAEP groups. A repeated measures analysis of variance (ANOVA) 
was performed for Go/Nogo ERP amplitudes and latencies, with the condition (Go and Nogo) and electrode site 
(Fz, FCz, Cz, and Pz) as the within-group factors, and the two comparing groups (low LDAEP vs. high LDAEP) 
as the between-group factor. Because LDAEP could be significantly influenced by gender, age, and smoking60, 
gender and age were considered as covariates in both the MANOVA and repeated measures ANOVA.

The comparison of sLORETA images between the two groups for Nogo-N2 and P3 was done using a statistical 
non-parametric mapping method (SnPM) that was provided by the sLORETA software. This software provides 
voxel-by-voxel independent t-test for the 6239 voxels, followed by a randomization test (n =  5000) to correct for 
multiple comparisons.

In addition, the relationships among variables were analyzed by Spearman’s correlation. When LDAEP was 
included in the correlation analysis, partial Spearman’s correlation was used to control age and sex as covariates. 
The significant level was set at p <  0.05 (two-tailed). Statistical analyses were performed using SPSS 21 (SPSS, Inc., 
Chicago, IL, USA).
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