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Abstract

It has been demonstrated that the performance of typical unimodal brain-computer inter-

faces (BCIs) can be noticeably improved by combining two different BCI modalities. This so-

called “hybrid BCI” technology has been studied for decades; however, hybrid BCIs that par-

ticularly combine electroencephalography (EEG) and functional near-infrared spectroscopy

(fNIRS) (hereafter referred to as hBCIs) have not been widely used in practical settings.

One of the main reasons why hBCI systems are so unpopular is that their hardware is gener-

ally too bulky and complex. Therefore, to make hBCIs more appealing, it is necessary to

implement a lightweight and compact hBCI system with minimal performance degradation.

In this study, we investigated the feasibility of implementing a compact hBCI system with

significantly less EEG channels and fNIRS source-detector (SD) pairs, but that can achieve

a classification accuracy high enough to be used in practical BCI applications. EEG and

fNIRS data were acquired while participants performed three different mental tasks consist-

ing of mental arithmetic, right-hand motor imagery, and an idle state. Our analysis results

showed that the three mental states could be classified with a fairly high classification accu-

racy of 77.6 ± 12.1% using an hBCI system with only two EEG channels and two fNIRS SD

pairs.

Introduction

Brain-computer interfaces (BCIs) are an emerging technology that provides people who lost

their normal pathways for communication with an alternative communication channel by

decoding their neural signals [1–3]. For example, Han et al. [4] implemented an electroen-

cephalography (EEG)-based BCI system for online binary communication with a patient in

completely locked-in state, and demonstrated high online classification accuracy of 87.5% in

discriminating left-hand imagery and mental subtraction tasks. The brain activity of the BCI

user is captured via various neuroimaging modalities and is then translated into certain
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commands by which the user can communicate with the external world. The neuroimaging

modalities that can be used in BCI implementations are categorized into invasive and noninva-

sive methods according to the requirement (or not) of invasive surgery to implant neural-sig-

nal sensors into the brain. EEG and functional near-infrared spectroscopy (fNIRS) are the two

major neuroimaging modalities most frequently employed for implementing noninvasive

BCIs. These methods have several advantages over invasive methods, such as being safer and

offering high accessibility, a more affordable cost, scalability, and portability [5–9]. With the

rapid development of BCI technology, increasing interest has been drawn toward hybrid BCIs,

which are combinations of two or more BCI systems. Among the various possible hybrid

BCIs, the hybrid EEG-fNIRS BCI (hereafter referred to as hBCI) is the most widely studied

because of the complementary characteristics of EEG and fNIRS. Some recent studies, includ-

ing those of Fazli et al. [6], Shin et al. [10], and Khan et al. [11, 12] demonstrated that hBCIs

could achieve a better overall performance compared with unimodal BCIs in terms of classifi-

cation accuracy and information transfer rate (ITR). These improvements in performance are

thought to originate from the synergetic effect caused by the high temporal resolution of EEG

and the relatively lower variability of fNIRS [13, 14].

Recently, BCI researchers have been gradually focusing on implementing practical BCI sys-

tems, as indicated by Hwang et al. [15]. Therefore, the application fields of BCIs have extended

to various others, such as neuro-rehabilitation, neuro-feedback, assistive and humanoid

robots, the gaming and entertainment industry, and smart-home services [16–19]. However,

hBCI systems have rarely been used in practical applications yet because many sensors are

required to capture two different types of brain signals simultaneously, thus making the overall

hardware of such systems bulky and complex. Moreover, time-consuming preparatory steps,

such as the placement and attachment of the signal sensors, have to be carried out before each

use of the hBCI system, which consequently lowers its practicality. To circumvent this issue,

we have to develop a compact hBCI system by reducing the number of signal sensors while

maintaining an overall BCI performance level that is high enough for use in practical

applications.

In our previous study [20], we demonstrated the feasibility of developing a three-class hBCI

system that can successfully discriminate between three types of brain signals induced by men-

tal arithmetic (MA), motor imagery (MI), and idle state (IS) tasks. This hBCI system achieved

a fairly high classification accuracy of 82.2 ± 10.2% and a satisfactory ITR of 4.70 ± 1.92 bit/

min; however, the large numbers of signal sensors required (21 electrodes for EEG and six

source-detector (SD) pairs for fNIRS) made the preparation time prolonged and some partici-

pants felt tired even before starting the main experiments. In this study, we demonstrate the

feasibility of implementing a compact ternary hBCI system with minimum numbers of EEG

channels and fNIRS SD pairs. The proposed system can discriminate between three types of

mental states with a classification accuracy high enough to be used in practical settings.

Materials and methods

In this section, the experimental paradigms and analysis methods used are described in detail.

Note that some of the descriptions in this section were adopted from our previous study [20].

Dataset

We used a part of the EEG and fNIRS datasets used in our previous study [20]. The original

dataset consisted of 21-channel EEG (with a bipolar vertical EOG channel) and 16-channel

fNIRS data of 18 healthy adult participants (10 males and 8 females, 23.8 ± 2.5 years of age).

From the original dataset, EEG data recorded at 11 central channels (without a vertical EOG
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channel) and fNIRS data measured at all 16 prefrontal channels were selectively used. The

location of the EEG and fNIRS channels used in the present study are shown in Fig 1. Channels

were numbered in the same manner as in the previous study [20].

Experimental paradigm

Fig 2 shows the experimental paradigm used to generate the EEG and fNIRS dataset. Each trial

consisted of instruction (2 s), task (10 s), and inter-trial rest (16–18 s) periods. During the

instruction period, a right-hand MI, MA, or IS task was randomly selected. For the right-hand

MI tasks, a right arrow was presented to the user, whereas an expression consisting of a three-

digit number minus a one-digit number between 6 and 9 (e.g., 123 − 9) was randomly pre-

sented for the MA tasks. For the IS tasks, a fixation cross was displayed at the center of the

monitor. During the task period, the participants were asked to perform the designated task.

For the right-hand MI tasks, the participants imagined complex kinesthetic finger tapping,

namely tapping their fingers, in the order of second (index finger), third (middle finger),

fourth (ring finger), fifth (little finger), fourth, third, second, and first (thumb) repeatedly at a

rate of approximately 2 Hz. For the MA tasks, the participants were instructed to subtract the

one-digit-number from the three-digit number displayed during the instruction period and

then continuously subtract the one-digit number from the result of the previous calculation as

fast as possible (e.g., 123 − 9 = 114, 114 − 9 = 105, 105 − 9 = 96. . .). For the IS tasks, the partici-

pants had to remain relaxed without performing any specific mental imagery task. These three

tasks were performed 30 times each. Before the experiment, all participants underwent a pre-

Fig 1. Arrangement of EEG channels (blue) and fNIRS optodes (red: Sources, green: Detectors) on the frontal

(left) and motor (right) areas. Channels were numbered in the same manner as in a previous study [20].

https://doi.org/10.1371/journal.pone.0230491.g001

Fig 2. Illustration of a single trial of the experiment. Each trial consisted of an introduction period of 2 s, a task period of 10 s,

and an inter-trial rest period (stop and rest) of 16–18 s. During the introduction period, a random task (MA, MI, or IS) was

displayed to the participant. After a short beep, the participant performed the task displayed in the introduction period while

looking at a fixation cross. When a STOP sign was displayed with a second short beep, the participants stopped performing the

task and relaxed during the random-length inter-trial rest period.

https://doi.org/10.1371/journal.pone.0230491.g002
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training session with visual feedback to help them produce appropriate MI-related brain acti-

vation patterns. While the participants executed actual finger tapping tasks, their θ (4–8 Hz), α
(8–13 Hz), and β (13–30 Hz) band powers extracted from the EEG signals were displayed on

the monitor in real-time. Additionally, while the participants were performing kinesthetic

motor imagery (not visual motor imagery [21]), they were instructed to try to make the band

powers match as closely as possible those observed during actual finger tapping execution.

This motor imagery training procedure lasted until the participants could reproduce consis-

tent band power patterns during the motor imagery tasks, similar to those observed during the

actual finger tapping tasks. The average training time was approximately 15 min. Even though

some participants had difficulty in reproducing consistent task-related EEG signals, the train-

ing time was limited to 30 min to avoid the potential influence of the participants’ fatigue on

the data recording. Thus, this preliminary MI training procedure lasted from 5 to 30 min

depending on the participant.

Preprocessing

MATLAB 2017a (MathWorks; Natick, MA, USA) was used to analyze EEG and fNIRS data,

and some functions implemented in the EEGLAB (https://sccn.ucsd.edu/eeglab/index.php)

and BBCI toolboxes (https://github.com/bbci/bbci_public) were employed [22, 23]. EEG data

were first downsampled to 200 Hz and bandpass-filtered to 1–50 Hz with a 6th-order Butter-

worth zero-phase filter. As for the fNIRS data, the raw optical densities (ODs) were converted

to concentration changes of deoxy/oxy-hemoglobin (ΔHbR/ΔHbO) using the following for-

mula [24]:

DHbR

DHbO

 !

¼
1:8545 � 0:2394 � 1:0947

� 1:4887 0:5970 1:4847

 ! DOD780

DOD805

DOD830

0

B
@

1

C
A ðmM � cmÞ

where ΔODs represent the optical density changes at wavelengths of 780, 805, and 830 nm.

The converted ΔHbR and ΔHbO values were then bandpass-filtered to 0.01–0.09 Hz with a

6th-order Butterworth zero-phase filter.

Feature extraction

The EEG data were segmented into epochs from 0 to 10 s (task period) with respect to the task

onset (0 s). To apply the filter bank common spatial pattern (FBCSP) algorithm, we applied a

filter bank (6th-order Butterworth zero-phase filters) with multiple passbands of θ, α, and β
waves to each EEG epoch. The multiple passbands were chosen considering the participant-

dependency of the task-relevant frequency band, as reported by a previous study [25]. The

number of CSP components (k), which depends on the number of EEG channels, was deter-

mined as follows:

k ¼ minðn; 6Þ; ð2 � n � 11Þ

where n is the number of EEG channels used and min (a, b) returns the smaller value between

a and b. The EEG feature vectors were constructed using either the log-variance of k CSP com-

ponents (n� 6) or the first and last three CSP components (n> 6) sorted by their typical

eigenvalue score. Hence, a total of k × 60 EEG features were generated (k CSP components ×
[3 passbands × 20 trials]).

The fNIRS data were segmented into epochs from −1 to 15 s considering that the hemody-

namic delay is in the order of several seconds [27]. The baseline of the filtered data was
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corrected in each channel by subtracting the temporal mean amplitudes of the data within the

[−1 0] interval for each fNIRS epoch. fNIRS feature vectors were constructed using the tempo-

ral mean amplitudes for multiple temporal windows of 0–5, 5–10, and 10–15 s for each epoch.

This approach using multiple windows is known to result in higher classification accuracy

than using a single temporal window [20, 26]. The dimension of the fNIRS feature vectors was

([number of fNIRS channels × 2 fNIRS chromophores] × [3 periods × 20 trials]).

Classification

To perform three-class classification, we applied the one-versus-one (OVO) classification

strategy because it is impossible to directly apply the CSP filter to multi-class classification

problems. Therefore, the three-class classification problem was decomposed into three binary

classification problems (i.e., MA vs. MI, MA vs. IS, and MI vs. IS). For each of the possible

pairs of classes, binary classifications were performed using the shrinkage linear discriminant

analysis (sLDA) method. Shrinkage is a tool to improve the estimation of covariance matrices

in situations where the number of training samples is small compared to the number of fea-

tures. This method is known to mitigate the loss of classification accuracy due to the use of

high-dimensional feature vectors by employing a shrinkage parameter based on the Ledoit–

Wolf lemma [27–30]. To properly combine the EEG and fNIRS features, we adopted a meta-

classification method known to yield better classification accuracy than conventional methods

based on simply concatenating both types of features. Two individual classifiers were trained

using either the EEG or fNIRS feature vector sets, and then the outputs of the EEG and fNIRS

classifiers were combined to construct new feature vectors for the meta-classifier [6, 10, 31].

After the three binary classification results were acquired, majority voting was used to predict

the final class. Classification accuracy was evaluated via a 10 × 10-fold cross-validation. This

procedure randomly divides the dataset into ten equal-sized partitions. Nine partitions are

used for training the classifier and the remaining partition is used for testing the performance

of the classifier. This procedure is repeated ten times and the final classification accuracy is cal-

culated by averaging the ten separate results. Fig 3 illustrates the whole data-processing and

classification procedures.

Selection of the optimal sensor configuration

Among the central EEG channels covering the motor area [32–34], the optimal channels were

chosen based on an MI vs. IS classification accuracy criterion under the assumption that a

more accurate MI vs. IS classification result would also result in a more accurate three-class

classification result. Likewise, the optimal fNIRS SD pairs were chosen based on an MA vs. IS

classification accuracy criterion.

The optimal EEG channels were chosen via the following two steps:

(Step 1) We first determined the minimum number of EEG channels (denoted by m) required

to achieve an average classification accuracy for MI and IS tasks surpassing the threshold of

an effective BCI (70%) [35]. Starting from 11 EEG channels, the number of EEG channels

was reduced until only two EEG channels remained by using the sequential backward selec-

tion (SBS) algorithm because CSP filters require EEG data from at least two channels. For a

given number of EEG channels, the optimal combination of EEG electrodes that yielded

the highest classification accuracy for MI and IS tasks was determined independently for

each participant by repeatedly computing the classification accuracy for all possible combi-

nations of EEG electrodes.
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Step 2) After the determination of the value of m, a common set of m EEG channels (i.e., an

EEG configuration with m electrodes) that could generally maximize the MI vs. IS classifi-

cation accuracy averaged across all participants was determined.

As for the fNIRS data, the number of SD pairs is more important than the number of chan-

nels because the size of an fNIRS system mainly depends on the number of SD pairs rather

than that of channels. Therefore, the optimal number of lattice-arranged SD pairs was explored

based on an MA vs. IS classification accuracy criterion by decreasing the number of SD pairs

from six to one.

Statistical analysis

Statistical analyses were also performed using MATLAB 2017a. Because the normality crite-

rion was not satisfied owing to the small sample size used, non-parametric testing was

employed. A Friedman test was conducted to verify if there were significant differences among

the classification accuracies attained using different sorts of sensor arrangements. A Wilcoxon

signed rank test was used for post-hoc analyses, for which the p-values were corrected using

the false discovery rates (FDRs). The p-values of less than 0.05 were considered statistically sig-

nificant and all confidence intervals (CIs) were calculated at the 95% level using the following

formula:

tanhðarctanhðrÞ � 1:96=
ffiffiffiffiffiffiffiffiffiffiffi
n � 3
p

Þ;

where n is the sample size and r is the Spearman correlation coefficient. The effect size was cal-

culated to investigate the magnitude of differences using the following equations [36]:

Effect Size ¼
Z
ffiffiffiffi
N
p ;

where Z is the test statistics of the Wilcoxon signed rank test and N is the total number of

observations.

Fig 3. Data processing procedure. CSP and sLDA stand for common spatial pattern and shrinkage linear

discriminant analysis, respectively. To perform meta-classification, we concatenated the outputs of individual EEG and

fNIRS classifiers to construct feature vectors for the meta-classifier. The “one-versus-one” block represents the strategy

used to solve the three-class classification problem by dividing it into three binary classification problems and

employing majority voting (VOTE) based on the result of each binary classification to predict the class.

https://doi.org/10.1371/journal.pone.0230491.g003
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Results

Fig 4(A) shows the MI vs. IS EEG classification accuracies attained according to the number of

channels; the error bars indicate standard deviation. The red horizontal dashed line represents

the threshold of an effective BCI (70%). The average classification accuracies attained when

using eleven, seven, five, three, and two EEG channels (green bar graphs) were 89.7 ± 8.8%,

91.0 ± 7.6%, 91.1 ± 8.7%, 89.6 ± 9.7%, and 86.5 ± 12.4% (mean ± standard deviation), respec-

tively. The statistical significance between the different cases is shown in the inset of Fig 4(A)

as a p-value color map table, where statistically significant pairs are denoted by asterisks.

Although statistically significant differences were found in most cases, the absolute differences

were not very large. Based on these results, the minimal number of EEG channels for attaining

Fig 4. (a) MI vs. IS EEG classification accuracies as a function of the number of EEG channels. Green bars indicate the

grand average classification accuracies calculated using the sequential backward selection algorithm. The color map

indicates the statistical significance between the differences in classification accuracy calculated according to the

number of EEG channels (�p< 0.05). (b) MI vs. IS EEG classification accuracies calculated using the four optimal

configurations with two EEG channel, which were (c) (Cz, CP3; the best), (d) (Cz, C3), (e) (CP3, CP4), and (f) (C3, C4;

the fourth best). The red and green horizontal dashed lines indicate the threshold for an effective BCI (70%) and the

value corresponding to the two EEG channels (x-axis) shown in (a), respectively. The error bars indicate standard

deviation.

https://doi.org/10.1371/journal.pone.0230491.g004
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an average classification accuracy that surpasses the effective BCI threshold was found to be

two. In the next step, the average classification accuracies for all 27 possible EEG channel pairs

were calculated. Fig 4(B) shows the classification accuracies attained using the four EEG chan-

nel pairs indicated by red dashed-line circles in Fig 4(C)–4(F), which were the highest classifi-

cation accuracies. The green horizontal dashed line indicates the classification accuracy

averaged across all participants when individually optimal EEG channel pairs were used

instead of a common EEG channel configuration (86.5 ± 12.4%, as indicated in Fig 4(A)). All

the results are summarized in S1 Table included in Supplementary Information file. As shown

in Fig 4(B), the four best channel pairs yielded classification accuracies of 84.8 ± 13.4%,

84.1 ± 13.0%, 83.3 ± 13.1%, and 82.8 ± 12.5%. No significant differences in classification accu-

racy were found among them. Out of the four channel pairs, the (Cz, C3) channel pair, which

was the second best in terms of classification accuracy, was selected instead of the (Cz, CP3)

channel pair, which was the best channel pair. This was done because we think that the (Cz,

C3) channel pair is much easier to implement in a practical wearable system, as readily shown

in Fig 4(D).

As for the fNIRS data, the MA vs. IS classification accuracies according to the number of

SD pairs are shown in Fig 5(A), in which the error bars indicate standard deviation. In total,

twenty different SD pair arrangements were tested as summarized in S2 Table in the Supple-

mentary Information file. The highest classification accuracies achieved with six, five, four,

three, two, and one SD pairs were 82.6 ± 6.7%, 83.1 ± 7.3%, 81.4 ± 7.1%, 80.1 ± 7.7%,

74.4 ± 9.5%, and 65.2 ± 9.2%, respectively (see Fig 5(B) for the optimal SD pair arrangements

for different numbers of SD pairs). Compared with the classification accuracy achieved when

using all SD pairs, a statistically significant loss of classification accuracy was observed when

the number of SD pairs was less than four. In addition, we found that the classification accu-

racy for a single SD pair case dropped under the effective BCI threshold, implying that at least

two SD pairs should be employed to implement a practically feasible BCI. Therefore, we

expected that two SD pairs representing the left dorsolateral prefrontal cortex (left DLPFC)

(Ch 5, 10, 11, and 16) or the right DLPFC (Ch 1, 6, 7, and 12) would be the best choices consid-

ering the important role of the DLPFC in cognitive task performance. The arrangements of SD

pairs that yielded the highest MA vs. IS classification accuracy for each number of SD pairs are

shown in Fig 5(B). The optimal SD pairs were mostly located in the left prefrontal area, which

is in line with the important role of the dorsolateral prefrontal cortex in cognitive task perfor-

mance and previous studies reporting that brain activity in the left prefrontal area is closely

associated with mental arithmetic tasks [37]. More detailed results are summarized in Table 2

in S1 Text.

Table 1 shows the classification accuracies of three-class hBCIs that included the (Cz, C3)

EEG channels but had different numbers of fNIRS SD pairs. The average hBCI classification

accuracies were 77.0 ± 9.3%, 78.2 ± 9.7%, 78.9 ± 9.9%, 78.8 ± 10.6%, 77.6 ± 12.1% when the six,

five, four, three, and two SD pairs that are depicted in Fig 5(B) were employed, respectively.

No significant differences in classification accuracy were observed among the systems. We

then compared the three-class classification accuracies of the hBCIs with those of an EEG-

based BCI that solely used the data from (Cz, C3) EEG channels, for which the results are listed

in the rightmost column of Table 1. The average EEG classification accuracy was reported to

be 72.6 ± 13.9%, demonstrating the advantage of employing hBCIs in ternary BCI applications.

Statistical tests showed that the classification accuracies of the EEG-only BCI and the hBCIs

differed significantly when the number of SD pairs was two, three, and four (corrected

p< 0.05). Since we selected the (Cz, C3) EEG channels instead of (Cz, CP3), which showed the

highest classification accuracy, we also calculated the average classification accuracies for

three-class hBCI when the (Cz, CP3) EEG channels were selected. The results were
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77.9 ± 10.1%, 78.5 ± 10.1%, 79.1 ± 10.8%, 78.9 ± 10.7%, 76.4 ± 10.5% when (Cz, CP3) EEG

channels were used with six, five, four, three, and two SD pairs, respectively. The results indi-

cate that there were no big differences between the classification accuracies achieved using

(Cz, CP3) and (Cz, C3). Our results show that the three mental states could be classified with a

high classification accuracy of 77.6 ± 12.1% using an hBCI with only two EEG channels and

two fNIRS SD pairs.

Discussion

In the present study, we examined the feasibility of implementing a compact multi-class hBCI

with a minimal number of EEG channels and fNIRS SD pairs while maintaining BCI perfor-

mance as high as possible. Our simulation study using data from 18 participants acquired as

they performed three types of mental tasks demonstrated that an hBCI with only two EEG

channels and two fNIRS SD pairs could yield a fairly high ternary classification accuracy of

77.6 ± 12.1% (theoretical chance level = 33.3%), which is thought to be high enough for practi-

cal BCI applications. In our previous study, in which we used the same dataset as the one used

in this study, the ternary classification accuracy of the proposed hBCI was 82.2 ± 10.2% [20],

which is approximately 5% higher than the accuracy attained by the system reported in the

Fig 5. (a) Highest MA vs. IS fNIRS classification accuracies as a function of the number of SD pairs shown in (b).

Statistical significance was calculated between the classification accuracies achieved using all the SD pairs and various

numbers of SD pairs (�p< 0.05, ��p< 0.01, ���p< 0.001). The error bars represent the standard deviation.

https://doi.org/10.1371/journal.pone.0230491.g005
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present study. Although the statistically significant loss of classification accuracy was observed

(p< 0.05), the effect size was 0.42 which means that the effect is not large according to Cohen’s

classification, and this difference does not seem to be very large considering that the previous

results were achieved with a much higher number of sensors (21 EEG channels and six fNIRS

SD pairs) than that used in this study (two EEG channels and two fNIRS SD pairs). Our results

suggest that it would be feasible to implement a compact (or wearable) multi-class hBCI with

fairly high performance for practical BCI applications.

Many previous studies have shown that the use of hBCIs can improve the classification

accuracy of BCI systems; however, most of them used many EEG channels and fNIRS optodes.

For example, Kaiser et al. [38] reported an average two-class classification accuracy of

76.7 ± 14.1% using six EEG channels and 33 fNIRS optodes, Fazli et al. [6] reported an average

two-class classification accuracy of 83.2 ± 14.6% using 37 EEG channels and 24 fNIRS optodes,

Shin et al. [10] used 30 EEG channels and 30 fNIRS optodes to achieve an average two-class

classification accuracy of 83.6% (note that standard deviation was not provided), and Yin et al.

[14] achieved an average classification accuracy of 89.0 ± 2.0% when discriminating between

two different hand-clenching speed levels in motor imagery using 21 EEG channels and 18

fNIRS optodes. In a recent study, an hBCI system with reduced numbers of sensors, namely

three EEG channels and 12 fNIRS optodes, was implemented [39]. This system exhibited an

average binary classification accuracy of 81.2 ± 7.5% when discriminating between left- and

right-hand MI tasks. However, in that study, the fNIRS signals were recorded at central areas

over the primary motor cortex, in which case long and tedious preparatory work is generally

Table 1. Individual three-class hBCI classification accuracies.

fNIRS

Participant

All 5 Pairs 4 Pairs 3 Pairs 2 Pairs EEG only(Cz, C3)

1 74.8 79.8 80.8 80.1 82.6 79.1

2 81.0 82.3 80.6 82.7 81.7 79.3

3 74.7 76.8 77.2 78.7 77.3 79.3

4 89.9 92.4 92.7 93.6 91.1 86.3

5 66.0 63.3 59.4 60.2 58.3 55.8

6 90.4 93.2 94.6 94.1 94.8 88.7

7 62.2 71.3 74.3 72.1 72.0 72.4

8 71.2 73.6 75.2 72.9 74.1 70.1

9 79.1 83.1 84.1 86.9 87.7 75.6

10 78.8 80.4 81.4 82.0 84.4 80.1

11 87.3 90.4 91.0 92.4 91.9 91.3

12 74.8 72.8 73.8 75.7 68.1 63.2

13 57.6 55.9 58.0 57.3 55.9 58.7

14 78.8 77.7 78.4 70.3 62.7 50.0

15 70.8 73.4 74.9 72.9 67.7 54.9

16 84.7 78.1 76.4 75.2 71.0 52.3

17 87.8 89.3 90.2 91.0 94.3 94.8

18 76.1 74.0 77.8 81.0 80.6 74.6

Mean 77.0 78.2 78.9� 78.8� 77.6� 72.6

Std 9.3 9.7 9.9 10.6 12.1 13.9

Individual three-class hBCI classification accuracies attained using the optimal EEG channel pair (Cz, C3) and different numbers of SD pairs. The three-class EEG

classification accuracy results for the (Cz, C3) channel pair are shown in the right-end column. The statistical significance of the differences between the classification

accuracies calculated using EEG channels only (right-end column) and both EEG and fNIRS channels are marked (�p< 0.05).

https://doi.org/10.1371/journal.pone.0230491.t001
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inevitable for acquiring high-quality signals free from interference originating from hairs

(especially dark dense hair) unless certain specialized equipment is employed [40]. Wang et al.

[41] reported an average classification accuracy of 92.66 ± 1.11% in discriminating right-hand

and foot MI tasks with only four EEG channels, which is the best MI classification perfor-

mance ever achieved with such a small number of channels and is comparable to our accuracy

of 91.1% achieved with five EEG channels. However, in Wang et al.’s study, optimal EEG chan-

nels were selected individually from larger number of channels. On the contrary, our results

showed a high classification accuracy of 84.8 ± 13.4% with a common two-cahnnel EEG con-

figuration (Cz and CP3). It is obvious that the individually optimized channels would yield

better performance, but it should also be noted that the individualization approach requires an

additional preparatory work to find the optimal channels from with a large number of chan-

nels and cannot be readily applied to wearable-type EEG devices.

We selected the number and placement of EEG sensors that maximized MI vs. IS classification

accuracy and of fNIRS SD pairs that maximized MA vs. IS classification accuracy under the

assumption that higher MI vs. IS EEG and MA vs. IS fNIRS classification accuracies would lead

to higher three-class hybrid classification accuracy. To validate this assumption, we first calcu-

lated the spearman’s rank correlation coefficient (r) between the MI vs. IS EEG classification

accuracies and three-class hBCI classification accuracies. All possible EEG channel pairs and the

two optimal SD pairs (red dashed-line square in Fig 5(B)) were used to calculate the three-class

hBCI classification accuracies. A significant positive correlation was found between the two types

of classification accuracy (r = 0.944, 95% CI: 0.88–0.97, p< 0.001). As for the fNIRS aspect of the

proposed system, we also evaluated the spearman’s rank correlation between the MA vs. IS and

the three-class hBCI classification accuracies. All possible arrangements of two SD pairs (see S2

Table in S1 Text) and the (Cz, C3) EEG channel set were used to calculate the three-class hBCI

classification accuracies. Similar to the EEG case, a significant positive correlation (r = 0.857, 95%

CI: 0.15–0.98, p< 0.024) was found between the two types of classification accuracy.

An important issue that needs to be considered when implementing an hBCI system is

selecting an appropriate number of mental tasks that can produce separable task-related brain

signals. If a higher number of mental tasks that can produce distinguishable responses are

employed, a higher information transfer rate can be achieved. For example, according to a pre-

vious study [26], breath holding (BH) task-related prefrontal fNIRS responses could be clearly

discriminated from the MA- and IS-related ones. In addition, the fact that right-hand MI and

left-hand MI induce discernible EEG signals has been well documented [34]. In this study,

although only three mental tasks (MI, MA, and IS) were employed, the proposed hBCI could

be expanded to a higher-order system (four or higher) by adopting a higher number of mental

tasks, which is a promising research objective that we want to pursue in future studies.

The EEG and fNIRS data used in this study were recorded in a laboratory environment,

and thus their practical usability should be further validated in the future studies. In addition,

the participants recruited in this study were only healthy subjects; however, as people with

severe neurological disorders might also have declined cognitive function. Therefore, it would

be our future studies to implement a compact hBCI system combining the EEG and fNIRS sys-

tems based on the simulation results and evaluate the system with patients with severe disabil-

ity in non-laboratory environments. In addition, the overall classification accuracy of the hBCI

system also needs to be increased further for the system to be used in practical scenarios.

Supporting information

S1 Text. Supplementary information of detailed classification accuracies according to the

EEG and fNIRS configurations and arrangement of the fNIRS optodes. Two tables and one
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figure are included in the Supplementary Information file: S1 Table. Two-channel EEG config-

urations and the corresponding MI vs. IS classification accuracies, S2 Table. NIRS SD arrange-

ments and the corresponding MA vs. IS classification accuracies, and S1 Fig. Arrangement of

the fNIRS optodes.

(PDF)
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