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A B S T R A C T

Background: Electroencephalogram (EEG)-based brain network analysis is a useful biological correlate reflecting
brain function. Sensor-level network analysis might be contaminated by volume conduction and does not explain
regional brain characteristics. Source-level network analysis could be a useful alternative. We analyzed EEG-
based source-level network in major depressive disorder (MDD).
Method: Resting-state EEG was recorded in 87 MDD and 58 healthy controls, and cortical source signals were
estimated. Network measures were calculated: global indices (strength, clustering coefficient (CC), path length
(PL), and efficiency) and nodal indices (eigenvector centrality and nodal CC) in six frequency. Correlation
analyses were performed between network indices and symptom scales.
Results: At the global level, MDD showed decreased strength, CC in theta and alpha bands, and efficiency in
alpha band, while enhanced PL in alpha band. At nodal level, eigenvector centrality of alpha band showed region
dependent changes in MDD. Nodal CCs of alpha band were reduced in MDD and were negatively correlated with
depression and anxiety scales.
Conclusion: Disturbances in EEG-based brain network indices might reflect altered emotional processing in
MDD. These source-level network indices might provide useful biomarkers to understand regional brain pa-
thology in MDD.

1. Introduction

Major depressive disorder (MDD) is a serious mental disease char-
acterized by depressed mood, and MDD patients showed loss of interest
and pleasure, insomnia, concentration difficulties, fatigue, and feelings
of worthlessness (Friedman et al., 2011). Previous research has reported
that individuals MDD show reduced behavioral reactivity and altered
brain activation in the anterior cingulate cortex (ACC), amygdala, and
insula while performing goal-directed task (Bourke et al., 2010; Bylsma
et al., 2008).

Recently, however, researchers have become more interested in
resting-state brain functions rather than brain functions during goal-
directed tasks (Dutta et al., 2014; Fingelkurts and Fingelkurts, 2015;
Kaiser et al., 2015; Zeng et al., 2012). In particular, resting-state
functional connectivity (FC) between brain regions could provide a
more informative insight about the pathophysiology of MDD
(Fingelkurts et al., 2007). The altered resting-state FC of MDD has been
reported by various functional magnetic resonance imaging (fMRI)

studies (Mulders et al., 2015). (Greicius et al., 2003) observed an en-
hanced FC between the posterior cingulate cortex (PCC) and the ventral
anterior cingulate cortex (vACC) in resting-state compared with per-
forming tasks. An additional study showed increased resting-state FC
between subgenual anterior cingulate cortex (sgACC) and amygdala
and sgACC and insula of MDD compared to healthy controls (HCs)
(Connolly et al., 2013). Conversely, diminished FC patterns between the
para-hippocampal gyrus and frontal cortex have been reported (Zhou
et al., 2012); moreover, reduced FC among the ACC, PCC, medial pre-
frontal cortex (mPFC), and orbitofrontal cortex have also been observed
(Anand et al., 2009; Bluhm et al., 2009; Cullen et al., 2009). However, it
is still controversial whether FC between specific brain regions, such as
the cerebellum and temporal and fusiform gyri, is enhanced or not in
the context of MDD (Dutta et al., 2014; Zhou et al., 2012).

Furthermore, several studies investigated brain network based
graph theoretical approaches, which would quantify dynamical com-
plex brain network at both global and nodal levels (see the supple-
mentary for the more detailed explanation of each index). Dynamic
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network measurements would help to understand brain mechanism of
the psychiatric disorder including MDD. For instance, MDD showed
short path length and enhanced global efficiency (Guo et al., 2014), and
high local efficiency and modularity of MDD were also investigated (Ye
et al., 2015). Moreover, MDD showed decreased nodal efficiency and
nodal degree in the frontal area including the ACC and dorsolateral and
superior frontal areas (Hou et al., 2016; Ye et al., 2016); in contrast,
increased nodal efficiency was observed in limbic regions (Ye et al.,
2016).

Until now, most of the previous network studies used fMRI to in-
vestigate brain network. fMRI is suitable imaging tool to investigate
regional information of brain network due to its excellent spatial re-
solution; nevertheless, fMRI has low temporal resolution, and is limited
in its ability to elucidate neural processes that occur over the course of
milliseconds (Kim et al., 1997). Electroencephalogram (EEG) is a sui-
table tool to address the limitations of fMRI, as it can be used to observe
fast neural processes because of its high temporal sensitivity (Burle
et al., 2015; Wierda et al., 2012). Also, the dynamic neural oscillations
could be quantified by spectrum analysis of EEG signal (Fingelkurts and
Fingelkurts, 2015; Nuwer, 1997; 1988).

In particular, abnormal alpha rhythm during resting-state is known
to be related to the pathologic characteristics of MDD (Fingelkurts
et al., 2007; Jaworska et al., 2012; Knott et al., 2001; Olbrich and Arns,
2013). Previous studies have shown that relatively higher alpha power
at left than right frontal region and altered alpha activity at the occi-
pital area are two remarkable characteristics of MDD (Fingelkurts et al.,
2007; Jaworska et al., 2012; Knott et al., 2001). Moreover, disrupted FC
in theta and alpha bands were revealed by various synchrony measures
such as partial directed coherence and operational synchrony index
(Fingelkurts et al., 2007). Furthermore, increase in the operational
synchrony within three subnets of the default mode network was found
in the MDD patients when compared with healthy controls (Fingelkurts
and Fingelkurts, 2017). The enhanced connectivity within the three
subnets was related to first-person perspective, reflective agency and
narration, and bodily representational-emotional agency (Fingelkurts
and Fingelkurts, 2017).

Despite the promise of using EEG to better understand brain net-
works, most of the previous EEG studies have some limitations (sensor/
electrode-level analysis, a small number of electrodes, and/or a small
number of participants) that may affect interpretations of the obtained
results. Also, poor spatial sensitivity by volume conduction effect
caused spurious connection and may provide inaccurate regional in-
formation (Cho et al., 2015; van den Broek et al., 1998). Source loca-
lization would become a solution to overcome volume conduction (Cho
et al., 2015; Haufe et al., 2013; Shim et al., 2014). Thus, the source-
level, multi-channels, and large-scale studies are necessary for EEG-
based brain network analysis.

The present study explored the altered cortical brain networks in
MDD during resting-state using a source-level network analysis of EEG
data. The source-level brain network could evaluate disrupted global
network patterns of information on specific cortical regions.
Furthermore, the relationships between psychiatric symptom scales and
the altered cortical network could be revealed by correlation analysis.

2. Material and methods

2.1. Participants

Eighty-seven patients with MDD (33 male and 54 female subjects)
and 58 healthy control (HC) (30 male and 28 female subjects) were
recruited for this study. The patients were diagnosed based on the
Structured Clinical Interview for Diagnostic and Statistical Manual of
Mental Disorders, 4th edition (DSM-IV) Axis I Psychiatric Disorders
(First et al., 1997) by a psychiatrist. Patients were excluded if they
accorded with the following criteria: 1) disease of the central nervous
system, 2) medical history of alcohol or drug abuse, 3) mental

retardation, 4) a history of head injuries with loss of consciousness and
experience with electrical therapy, 5) other significant psychiatric ill-
ness such as schizophrenia, bipolar disorder, and anxiety disorders. All
the subjects were recruited and their depressive symptoms were ex-
amined during their screening period in a drug naive state. The elec-
trophysiological assessment was performed from zero to fourteen
(mean ± S.D.= 5.6 ± 3.5) days after the commencement of the an-
tidepressant treatment. Since the present study was naturalistic in de-
sign, most of the patients needed to take their medication before the
scheduled electrophysiological assessment. Data on the antidepressant
treatment at the time of EEG measurement was as follows: no medi-
cation (n=11, 12.7%), escitalopram (n=31, 36.0%), paroxetine
(n=21, 24.4%), fluoxetine (n=8, 9.3%), and vortioxetine (n=15,
17.4%). Benzodiazepine use were restricted as lorazepam and alpra-
zolam as needed. HC were recruited from the local community through
local newspapers and posters. All subjects provided written informed
consent, and the study protocol was approved by the Institutional Re-
view Board of Inje University Ilsan Paik Hospital (2015-07-048-002).
Participant demographics reported in Table 1.

2.2. Psychological evaluation

Hamilton Anxiety Rating Scale (HAM-A; Cronbach α=0.84)
(Hamilton, 1959; Park et al., 2016) and Beck Anxiety Inventory (BAI;
Cronbach α=0.92) (Beck and Steer, 1990; Lee et al., 2016) were used
to evaluate anxiety symptoms. Hamilton Depression Rating Scale
(HAM-D; Cronbach α=0.79) (Hamilton, 1986; Yi et al., 2005) and
Beck Depression Inventory (BDI; Cronbach α=0.89) (Beck et al., 1996;
Lee et al., 2017) were used to investigate depressive symptoms.

2.3. EEG recordings and pre-processing

EEG signals were recorded using a NeuroScan SynAmps2 amplifier
(Compumedics USA, El Paso, TX, USA) from 62 Ag/AgCl scalp elec-
trodes that were evenly mounted on a QuikCap according to the ex-
tended international 10−20 system. Electrode impedances
were<5 kΩ. The ground electrode was placed on the forehead, and the
reference electrodes were attached at the Cz electrode. The vertical
electrooculogram channels were located above and below the right eye,
and the horizontal electrooculogram channels were placed on the outer
canthus of each eye. The EEG data were recorded with a 0.1−100-Hz
bandpass filter at a sampling rate of 1000 Hz, with 60 Hz noise removed
using a notch filter.

Resting-state EEGs were recorded for 5min with the eyes closed.
Eye-related artifacts were corrected using the standard correction al-
gorithms implemented in the preprocessing software (Roh et al., 2016).
Gross artifacts, such as movement artifacts, were rejected by visual
inspection by a skilled expert. After rejecting artifacts, the data were

Table 1
Demographic data of patients with major depressive disorder and healthy
controls.

MDD HC p

Cases (N) 87 58
Gender (male/female) 33/54 30/28 0.124
Age (years) 42.14 ± 10.48 39.98 ± 11.63 0.248
Education (years) 13.23 ± 3.32 14.45 ± 3.37 0.069

Symptom score
HAM-A 22.09 ± 6.95
HAM-D 25.82 ± 8.74
BDI 25.63 ± 10.16
BAI 24.06 ± 9.41

MDD, Major depressive disorder; HCs, Healthy controls; HAM-A, Hamilton
Anxiety Rating Scale; HAM-D, Hamilton Depression Rating Scale; BDI, Beck
Depression Inventory; BAI, Beck Anxiety Inventory.
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bandpass filtered at 1−55 Hz and segmented into epochs with a
duration of 4.096 s. The epochs were rejected if they contained sig-
nificant physiological artifacts (amplitude exceeding±75 μV) at any
site over all electrodes, and ten artifact-free epochs were used for each
subject for source-level network analysis (Shim et al., 2017). Epoch
length was determined considering both efficiency and reliability based
on previous research findings (Gudmundsson et al., 2007). The analysis
pipeline for cortical network used in the present study is the same as in
our previous paper (Shim et al., 2017). We used Matlab (Mathworks
Inc.) while performing network analyses procedures.

2.4. Source localization

To estimate a time-series of source activities, the minimum-norm
estimation was used, which was implemented in the eConnectome
toolbox (Biomedical Functional Imaging and Neuroengineering
Laboratory, University of Minnesota, Minneapolis, MN, USA) (He et al.,
2011). A three-layer boundary element method (BEM) model, con-
structed from the Montreal Neurological Institute (MNI) 152 standard
template, was used to compute the lead field matrix. Cortical current
density values at 7850 cortical vertices were evaluated for every time-
point of each epoch. After estimating the cortical current density at
every time-point, 66 nodes were selected from among the original
cortical vertices. In our previous studies, we chose 314 nodes as evenly
as possible (Shim et al., 2014); however, we found that these were too
numerous to allow efficient estimation of the brain regions. Thus, here,
we evenly selected 66 nodes (33 per hemisphere) that were sampled
based on the Brodmann areas (BA), excluding areas located deep in the
brain (see supplement method). The representative value of each node
was evaluated by averaging the cortical sources located in each node. A
time-series of the cortical sources at each of the 66 nodes were bandpass
filtered and divided into six frequency bands (delta [1−4 Hz], theta
[4−8 Hz], alpha [8−12 Hz], low-beta [12−22 Hz], high-beta [22−30
Hz], and gamma [30−55 Hz]).

2.5. Connectivity and network analysis

The FC between each pair of nodes was evaluated using phase-
locking values (PLVs). PLVs were used as the measure of synchroniza-
tion because PLVs range from 0 to 1; thus, they can be directly used to
represent the connection strength in a weighted network analysis,
without any further modification (Lachaux et al., 1999; Shim et al.,
2017; 2014).

The weighted network was quantitatively analyzed based on the
graph theory (Bullmore and Sporns, 2009b; Sporns et al., 2004). In the
present study, we selected representative network measurements at
both the global and nodal levels. Strength, clustering coefficient, path
length, and efficiency were calculated for the global level network, and
nodal clustering coefficient and eigenvector centrality were evaluated
for the nodal level network. The network measurements are defined as
follows: 1) Strength represents the degree of connection strength in the
network. A higher strength value means that the whole brain is strongly
connected. 2) Clustering coefficients (CC) represent the degree in which
a node is clustered with its neighbor's nodes. The enhanced CC in-
dicated the well-segregated network between the relevant brain re-
gions. 3) Path length (PL) is the summation of lengths between two
nodes within the network. The PL of a well-integrated network is
shorter than a randomly organized network, which is related to the
speed of information processing. 4) Efficiency is the effectiveness of
information processing in the brain; low efficiency means the network
performs at a lesser work rate. 5) Eigenvector Centrality (EC) represents
the influencing power of hub of the network. EC is calculated by con-
sidering both degree and strength of connection of brain network. High
EC refers to the vital node in the network. CC and EC are computed at
each node and then averaged over all values for quantifying global level
network. For more details (e.g. equations) on these mentioned network

measures please see the supplementary information and references.

2.6. Statistical analysis

The differences in cortical network characteristics at the global level
between patients with MDD and HCs were investigated for each fre-
quency band using independent t-tests. Since four network values were
repeatedly tested at each frequency, 4 independent t-test were per-
formed with adjusted p-values using the false discovery rate (FDR)
method to limit type I error (Benjamini and Hochberg, 1995). At the
nodal level characteristics, since the number of nodes are sixty six, 66
independent t-tests were performed for each frequency band with an
adjusted p-values using the FDR method. When significant differences
were found in the network indices between the two groups, the effect
size (eta squared, η2) was calculated, and significantly different nodes
were defined with a 0.06-threshold (medium effect) (Green and
Salkind, 2010). Correlation analyses were performed to investigate the
relationships between the network indices and the symptom severity
scores in patients with MDD with adjusted p-values using FDR.

3. Results

3.1. Demographic data

The patients with MDD and HC did not differ in gender (p=0.124),
age (p=0.248), and education (p=0.069). The average and standard
deviation of psychiatric scores in MDD are as follows: HAM-A,
22.09 ± 6.95; HAM-D, 25.82 ± 8.74; BDI, 25.63 ± 10.16; and BAI,
24.06 ± 9.41. Demographic and psychological characteristics of par-
ticipants are shown in Table 1. All patients were receiving medications
during the study: selective serotonin reuptake inhibitors (N=69),
venlafaxine (N=15), mirtazapine (N=5), lorazepam (N=32), clo-
nazepam (N=22), diazepam (N=10), and alprazolam (N=20).

3.2. Global level network

The global level network indices of strength, CC, PL, and global
efficiency showed significant differences between patients with MDD
and HCs (Table 2). Strength, CC, and efficiency were significantly de-
creased in MDD compared to HCs in the theta band (strength:
29.52 ± 5.33 vs. 31.50 ± 5.40, p=0.031; CC: 0.42 ± 0.09 vs.
0.45 ± 0.09, p=0.037, FDR corrected) and alpha band (strength:
36.08 ± 7.55 vs. 39.45 ± 7.81, p=0.010; CC: 0.51 ± 0.12 vs.
0.58 ± 0.13, p=0.010; efficiency: 0.57 ± 0.10 vs. 0.61 ± 0.11,
p=0.013, FDR corrected). On the other hand, PL was significantly
longer in MDD compared to HCs only in the alpha band (2.17 ± 0.47
vs. 1.99 ± 0.45, p=0.019, FDR corrected).

Table 2
Mean and standard deviation values of the global network indices of strength,
clustering coefficient, path length, and efficiency in theta and alpha band fre-
quencies.

MDD HC Corrected p value

Theta band
Strength 29.52 ± 5.33 31.50 ± 5.40 0.031⁎
Clustering coefficient 0.42 ± 0.09 0.45 ± 0.09 0.037⁎
Path length 2.63 ± 0.38 2.51 ± 0.41 0.068
Efficiency 0.47 ± 0.08 0.50 ± 0.07 0.052

Alpha band
Strength 36.08 ± 7.55 39.45 ± 7.81 0.010⁎
Clustering coefficient 0.51 ± 0.12 0.58 ± 0.13 0.010⁎
Path length 2.17 ± 0.47 1.99 ± 0.45 0.019⁎
Efficiency 0.57 ± 0.10 0.61 ± 0.11 0.013⁎

Major depressive disorder, MDD; Healthy control, HC.
⁎ p < 0.05.
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Moreover, we checked the differences of global level network in-
dices by severity in MDD. MDD was divided into three groups using BDI
scale as follows: mild (BDI≤15), moderate (BDI: 16–23), and severe
(24≤ BDI). One-way analysis of variances (ANOVA) with Bonferroni
correction was performed to estimate the differences among three
groups. As a result, in alpha frequency band, severe group showed
significantly decreased strength, CC, and efficiency and increased PL
compared to mild group (strength: 34.18 ± 7.55 vs. 40.58 ± 8.17,
p=0.023; CC: 0.50 ± 0.12 vs. 0.60 ± 0.13, p=0.022; efficiency:
0.54 ± 0.11 vs. 0.64 ± 0.12, p=0.023; PL: 2.28 ± 0.47 vs.
1.91 ± 0.45, p=0.04, FDR corrected).

3.3. Nodal level network

Nodal level network indices were investigated in the theta and
alpha bands because the significant differences in the global level net-
work were found in these two frequency bands.

3.3.1. Eigenvector centrality
Eigenvector centrality of MDD was significantly different only in the

alpha band (p < 0.05, FDR corrected). Among the regions showing
significant differences, only two brain areas exceeded the effect size of
0.06. Eigenvector centrality of the inferior frontal gyrus (BA45) was
significantly decreased in MDD compared to HCs while, eigenvector
centrality of MDD in the inferior temporal gyrus (BA20) was sig-
nificantly enhanced compared to HCs (Fig. 1).

3.3.2. Nodal clustering coefficients
The patients with MDD showed significantly decreased nodal CC at

various regions only in the alpha band compared to HCs (p < 0.05,
FDR corrected). The brain regions exceeding the effect size of 0.06 were
as follows: the inferior frontal gyrus (BA45), secondary visual cortex
(BA18), superior temporal gyrus (BA22), and dorsolateral prefrontal
cortex (BA46) (Fig. 2). In addition, nodal CC showed significant nega-
tive correlations with symptom severity scores: the dorsolateral pre-
frontal cortex with BDI (rho=−0.332, p=0.002) and BAI
(rho=−0.259, p=0.018) scores respectively, the superior temporal
gyrus with BDI (rho=−0.326, p=0.003) and BAI (rho=−0.278,
p=0.010) scores respectively, and the inferior frontal gyrus with BDI
(rho=−0.377, p=0.001) and BAI (rho=−0.314, p=0.004) scores
in MDD (Fig. 2).

4. Discussion

The cortical brain networks during resting-state were investigated
by EEG source-level network analysis based on graph theory in patients
with MDD (Bondy and Murty, 1976; Bullmore and Sporns, 2009a). The
following were observed in patients with MDD: 1) in the global indices,
the strength and CC were significantly decreased in both theta and
alpha bands and enhanced PL and reduced efficiency were found in the
alpha band; 2) the nodal eigenvector centrality of the alpha band was
significantly decreased at the inferior frontal gyrus while increased in
the inferior temporal gyrus; 3) the nodal CCs were significantly reduced
in the alpha band, and they showed significant negative correlations
with depression and anxiety scores.

Fig. 1. Effect-size of differences of eigenvector centrality between patients with MDD and HCs in alpha frequency bands. The meaning of each bar is the effect-size at
each node. The threshold value was set as 0.06 (medium effect). In the brain model, the density of colors and size of circles represent the difference direction and
effect size, respectively (* ƞ2 > 0.06).

M. Shim et al. NeuroImage: Clinical 19 (2018) 1000–1007
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4.1. Global level network

The patients with MDD showed significantly decreased strength and
CC in both theta and alpha bands, while, prolonged PL and reduced
efficiency were revealed only in the alpha band.

Dynamic neuronal oscillations could be quantified as specific brain
patterns by spectral analysis of EEG signals (Fingelkurts and
Fingelkurts, 2015). Unique EEG patterns in psychiatric patients were
revealed during resting-state, and these patterns were related to the
pathological characteristics (Hughes and John, 1999; Sponheim et al.,

Fig. 2. Effect-size of differences of eigenvector centrality between patients with MDD and HCs in alpha frequency bands. The meaning of each bar is the effect-size at
each node. The threshold value was set as 0.06 (medium effect). In the brain model, the density of colors and size of circles represent the difference direction and
effect size, respectively (* ƞ2 > 0.06). The relationships between nodal clustering coefficient and psychiatric symptoms (MDD, Major depressive disorder; HCs,
Healthy controls; BDI, Beck Depression Inventory; BAI, Beck Anxiety Inventory).

M. Shim et al. NeuroImage: Clinical 19 (2018) 1000–1007
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2000). In particular, abnormal theta and alpha frequency patterns have
been continuously reported to be involved in MDD (Fingelkurts et al.,
2006; Klimesch, 1999; Li et al., 2015; Metzger et al., 2010; Mölle et al.,
2002; Quirk and Beer, 2006). These two type of frequency oscillations
are also known to relate to emotion processing (Aftanas and
Golocheikine, 2001; Aftanas et al., 2002). Thus, altered emotion pro-
cessing found in MDD would be closely associated with abnormal two
brain rhythms, a hypothesis that has been supported by a number of
quantitative EEG studies. For instance, altered alpha power in both
absolute and relative values of MDD has been observed (Pollock and
Schneider, 1990; Rosenfeld et al., 1995), while another study docu-
mented the relationships between abnormal alpha oscillation and di-
minished emotion arousal (Olbrich and Arns, 2013). Additionally, in-
creased frontal and parietal alpha power have been reported, which
was closely related to emotion processing (Jaworska et al., 2012), while
on the other hand, decreased theta power and its negative correlation
with severity of depression have also been reported (Spronk et al.,
2011). Moreover, there were several connectivity studies, but the re-
sults of these studies were inconsistent (Fingelkurts et al., 2007;
Leuchter et al., 2012). Some research reported the decreased functional
connectivity between the frontal and temporal area in the alpha fre-
quency band (Park et al., 2007); otherwise, increased functional con-
nectivity in the theta and alpha frequency bands were also found
(Fingelkurts et al., 2007), and altered functional connectivity was sig-
nificantly correlated with depression symptom scores and three com-
ponents (first-person agency, self-reflection and narration, and bodily
representational-emotional agency) of selfhood (Fingelkurts and
Fingelkurts, 2017).

Meanwhile, disrupted global network indices in patients with MDD
were revealed by fMRI. The patients with MDD showed enhanced
global efficiency and reduced PL compared to HCs (Zhang et al., 2011).
On the contrary, decreased global efficiency in MDD was found (Park
et al., 2013). Also, reduced PL and CC in patients with MDD were found
(Guo et al., 2014), and altered global network indices are significantly
correlated with depression severity scale scores. Even though previous
studies showed inconsistent results regarding whether or not the global
indices were increased, it is obvious that patients with MDD show al-
tered brain network as compared to HCs and the altered networks
would lead to inefficient information propagation.

In the present study, altered brain networks were observed (de-
crease – strength, CC, and efficiency; increase – PL) at the theta and
alpha frequency bands in patients with MDD. Reduced CC and en-
hanced PL could imply disrupted segregation and integration of brain
networks, and diminished strength could represent a weak connection
between brain areas. That is, the brain network of MDD is composed of
weak and low-level connectivity and it directly connected to inefficient
processing. In particular, MDD showed noticeable disrupt network
characteristics at theta and alpha rhythms, which are closely related to
abnormal emotion processing of MDD. That is, the altered network of
MDD at the theta and alpha frequency bands might cause the altered
emotional response or emotional arousal.

4.2. Nodal level network

The results of the nodal level could provide more specific regional
information of brain network, rather than global level information. In
the present study, patients with MDD showed two different directions of
eigenvector centralities; increased activity in the inferior temporal
gyrus and decreased activity in the inferior frontal gyrus. Moreover,
significantly reduced nodal CCs were revealed in the dorsolateral pre-
frontal cortex, inferior frontal gyrus, and superior temporal gyrus areas
in patients with MDD. These nodal CCs showed negative correlations
with depression and anxiety scores.

Past research has shown that MDD show impaired emotional in-
formation processing (Bylsma et al., 2008; Fingelkurts et al., 2007).
Several steps, such as recognition and regulation, are involved in

emotional information processing. Emotion recognition is an ability to
identify emotional stimuli (Phillips et al., 2003), and the temporal lobes
such as the amygdala, insula, inferior temporal gyrus, and superior
temporal gyrus are involved in emotion recognition (Bourke et al.,
2010; Keightley et al., 2003; Langenecker et al., 2005; Stuhrmann et al.,
2011b). Altered responses to emotional stimuli and disrupted temporal,
amygdala, and insular activities during emotion recognition are distinct
characteristics of patients with MDD (Langenecker et al., 2005;
Stuhrmann et al., 2011a).

Alternations in neural processes characteristic of MDD appear to
greatly disrupt individuals' ability to effectively regulate their emotions.
Emotion regulation is defined as processes of monitoring, evaluating,
and modifying for emotional features (Gross, 1998; Thompson, 1994).
This emotion regulatory process is largely controlled by the frontal
lobe, in regions such as the ACC, dorsolateral prefrontal cortex, and
inferior frontal gyrus (Grecucci et al., 2013; Hallam et al., 2015;
Ochsner et al., 2004; Rive et al., 2013a). Several studies have reported
that abnormal frontal cortex (including prefrontal and inferior frontal
gyrus) and anterior cingulate gyrus activities are closely related to
disrupted emotional regulation of MDD (Domes et al., 2010; Joormann
et al., 2012; Rive et al., 2013b). According to resting-state fMRI studies,
increased functional connectedness of limbic regions including the
amygdala and hippocampus as well as subcortical thalamic nuclei were
observed in patients with MDD; on the other hand, the decreased nodal
efficiency of cognitive control regions such as the dorsolateral pre-
frontal cortex and ACC have also been reported in patients with MDD
compared to HCs (Hou et al., 2016; Ye et al., 2016).

The Eigenvector centrality indicates a measure of the influence of a
node in a network. If one node has a higher value of eigenvector cen-
trality, it indicates this node is hyper-influencing compared to other
nodes in a network. That is, in the present study, the reduced eigen-
vector centrality of the inferior frontal gyrus implies diminished hub
function (diminished influencing power) in this area, which might re-
lated to impaired emotion regulation. On the other hand, the enhanced
eigenvector centrality of the inferior temporal gyrus represents the
hyperactive hub function (increased influencing power), which might
associate with the increased influx of emotional information.

Moreover, altered nodal CCs could support our hypothesis. The
patients with MDD showed decreased nodal CC of the dorsolateral
prefrontal cortex, inferior frontal gyrus, and superior temporal gyrus,
and these regions are concerned in emotional processing. Namely, re-
duced nodal CC may indicate weak (inefficient) networks strength
around these brain regions, and it might be affect information proces-
sing. Also, in the present study, as the severity scales of depression and
anxiety worsened, the indices of nodal CC diminished. It supported that
these three regions might be important to understand the altered
emotional function in patients with MDD.

In sum, the results from eigenvector centrality imply reduced in-
fluencing power for emotion regulation of the frontal lobe and en-
hanced influencing power for emotion recognition of the temporal lobe.
Moreover, reduced CC reflects weak network strength in the fronto-
temporal regions in patients with MDD, and it might help to understand
about ridiculous information flow of MDD during emotion processing.

4.3. Limitations

The use of medication was not controlled for in the present study,
and because of this, the results should be interpreted with caution. Our
result showed opposite side compared to previous studies controlled
medication of patients, such as decreased strength. We thought that this
finding might be influenced by medications of patients. Second, we did
not use individual head models for EEG source imaging, as the in-
dividual MRI data were not available.
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5. Conclusion

We found disturbances in EEG-based brain network index, which
might reflect altered emotional processing of MDD. Weak and in-
efficient brain networks were revealed in the theta and alpha bands.
Especially, the increased influencing power of the inferior temporal
gyrus might imply enhanced emotion recognition at this region of the
patients with MDD. These source level network analyses might provide
useful biomarkers to understand the regional brain pathology of MDD.
More study still need to explore brain networks of the MDD patients. In
present study, we focused on only static brain network of MDD; how-
ever, some recent studies augured that the brain network of MDD is
change over time (Cheng et al., 2016; Zhang et al., 2016; Zhang et al.,
2014). EEG is suitable imaging tools for exploring change of brain
network due to its high temporal resolution. Thus, we'll keep going
explore the dynamic brain network of MDD changed over time as a
future direction.
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