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Abstract

Background: Functional near infrared spectroscopy (fNIRS) finds extended applications in a variety of neuroscience
fields. We investigated the potential of fNIRS to monitor voluntary engagement of users during neurorehabilitation,
especially during combinatory exercise (CE) that simultaneously uses both, passive and active exercises. Although
the CE approach can enhance neurorehabilitation outcome, compared to the conventional passive or active
exercise strategies, the active engagement of patients in active motor movements during CE is not known.

Methods: We determined hemodynamic responses induced by passive exercise and CE to evaluate the active
involvement of users during CEs using fNIRS. In this preliminary study, hemodynamic responses of eight healthy
subjects during three different tasks (passive exercise alone, passive exercise with motor imagery, and passive
exercise with active motor execution) were recorded. On obtaining statistically significant differences, we classified
the hemodynamic responses induced by passive exercise and CEs to determine the identification accuracy of the
voluntary engagement of users using fNIRS.

Results: Stronger and broader activation around the sensorimotor cortex was observed during CEs, compared to
that during passive exercise. Moreover, pattern classification results revealed more than 80% accuracy.

Conclusions: Our preliminary study demonstrated that fNIRS can be potentially used to assess the engagement of
users of the combinatory neurorehabilitation strategy.

Keywords: Functional near-infrared spectroscopy (fNIRS) - motor rehabilitation - neurorehabilitation - combined
exercise - pattern classification - hemodynamic response

Background
Patients with motor impairments resulting from various
central nervous system diseases such as stroke, cerebral
palsy, and Parkinson’s disease encounter several difficulties
with their activities of daily life. Those severely affected
are unable to perform even basic body movements with-
out the help of caregivers or assistive devices. The motor
impairments consistently compromise the quality of their
life [1].

The most common neurorehabilitation strategy for the
recovery of impaired motor function is the repeated move-
ment of the body parts associated with the damaged brain
areas. The positive effect of this classical rehabilitation ap-
proach on motor re-learning has been demonstrated by a
large number of previous studies. For example, some ani-
mal studies have shown that the continuous repetition of
body movements can lead to both structural and functional
enhancements of the motor cortex [2–5]. Human studies
have also confirmed that the repetitive movement of
impaired limbs can result in the improvement of affected
motor functions [6–8]. In conventional motor rehabilitation
interventions, patients do not voluntarily perform the
repetitive movement of their impaired body parts, but the
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movement is enforced by a physiotherapist or an assistive
rehabilitation device. This form of neurorehabilitation is
called the passive exercise (PE) strategy. Although PE can
lead to enhancement of motor performance, its effect is lim-
ited compared to the so-called active exercise (AE) strategy
that involves voluntary movements of the patients [9, 10].
To enhance the clinical outcome of motor rehabilitation,
several studies have recently proposed advanced rehabilita-
tion strategies involving the combination of PE with AE,
called a combinatory exercise (CE) strategy. In this rehabili-
tation approach, patients are required to be voluntarily en-
gaged in rehabilitation training by additionally performing
active motor execution (AME) while passive motor execu-
tion (PME) is involuntarily conducted by a physiotherapist
or an assistive rehabilitation device. In the case that an af-
fected part is rendered immovable, motor imagery (MI), a
mental rehearsal of specific motor acts without overt move-
ment, can be used instead of AME.
Gritsenko et al. first introduced a CE approach in which

hand open was passively performed by functional elec-
trical stimulation (FES) while the other movements for
performing the given motor tasks were performed by the
experimental patients without any assistance [11]. This
study showed that the proposed CE approach could effect-
ively improve hand functions in patients with hemiplegia.
Since the study of Gritsenko et al., researchers have inves-
tigated the relationship of the motor functions enhanced
by CE to brain activity changes in the motor cortex using
neuroimaging modalities such as functional magnetic res-
onance imaging (fMRI) [12] and electroencephalography
(EEG) [13]. The two studies [12, 13] showed that perform-
ing CE (PME+AME or PME+MI) was more effective in
restoring impaired motor functions than PE alone, and
further confirmed that CE is more effective in augmenting
brain activity around motor areas compared to PE alone.
The main purpose of CE-based rehabilitation ap-

proaches is the active involvement of patients during PME
tasks that are usually carried out by therapists or rehabili-
tation devices. In the current CE-based rehabilitation pro-
grams, however, it is nearly impossible to directly assess
whether the patients are actively engaged in the given
motor tasks especially when the movement of an impaired
part of the body is made by an external neurorehabilita-
tion device such as rehabilitation robots and FES. Thus,
continuous verbal instructions may be the only option to
actively and consistently involve the patients in the
current CE-based rehabilitation exercises. If therapists
could clearly determine the involvement of the patients
during CE, it would help them provide timely feedbacks
to patients. This could significantly improve the efficiency
of the CE-based rehabilitation programs. To the best of
our knowledge, however, the quantitative evaluation of ac-
tive involvement of patients in given motor tasks during
CE has not been accomplished.

The fundamental goal of the present study was to assess
the degree of engagement of users of CE-based rehabilita-
tion programs, based on the differences in neurophysio-
logical findings of the activated motor-related brain areas
during combinatory movement (PME +AME or PME+
MI), compared to PME alone. In this study, fNIRS was
used to measure brain activity because it has been well
documented that fNIRS is less sensitive to motion artifacts
[14] and the changes in cognitive states such as attention
[14] and vigilance [15] can be successfully decoded from
the fNIRS signals. Eight healthy participants were re-
cruited in this study and were administered three different
rehabilitation exercises, one based on PE (PME only) and
two on CEs (PME +MI and PME+AME), during which
hemodynamic responses were measured using a multi-
channel fNIRS system. We performed statistical analyses
to examine the differences of hemodynamic responses
during the three experimental conditions, and attempted
to classify the respective hemodynamic responses (PME
vs. PME +MI and PME vs. PME +AME) to determine the
accuracy of identification of voluntary engagement of the
users using fNIRS signals.

Methods
Participants
Eight healthy participants (6 men and 2 women, average
age 26.13 ± 2.23 years, all right handed) were enrolled in
the present study. None of them had a previous history of
neurological, psychiatric, or other severe diseases that
could affect the experimental results. A comprehensive
summary of the experimental procedure and protocol was
provided to each subject before starting the experiment.
They provided informed consent and were reimbursed for
their participation on completion of the experiment. The
study was reviewed and approved by the Institutional
Review Board (IRB) committee of Hanyang University.

Functional near-infrared spectroscopy (fNIRS) setup
We used a commercial multi-channel fNIRS instrument
(FOIRE-3000; Shimadzu Co. Ltd., Kyoto, Japan) for recording
cortical hemodynamic activity. The system employs near-
infrared lasers of three different wavelengths, 780, 805, and
830 nm. The distance between the source and detector was
set at 3 cm, which was adequate to detect changes of brain
hemodynamic responses induced by motor execution or
motor imagery [16]. The absorption rates of the three near-
infrared lights with different wavelengths were acquired at a
sampling rate of 10 Hz and transformed into concentration
changes of oxygenated hemoglobin (oxy-Hb), deoxygenated
hemoglobin (deoxy-Hb), and total hemoglobin (total-Hb)
using the modified Beer-Lambert law [17]. The sources and
detectors were placed on the scalp surface using an elastic
cap according to the international 10–20 system that is the
standard method for electrode attachment for EEG recording
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[18]. In the present study, we used twelve sources and thir-
teen detectors, resulting in 40 NIR channels, as shown in
Fig. 1. Most optodes were distributed around the motor cor-
tex, thereby covering the premotor area, supplementary
motor area (SMA), primary motor area (M1), and posterior
parietal cortices. The center source was located at Cz pos-
ition (see Fig. 1). Prior to the experimental recordings, we
confirmed that the 40 channels functioned appropriately in
terms of light intensity.

Experimental paradigm
During the experiment, the participants were seated in a
comfortable armchair, facing a 17-in. LCD monitor, which
provided the instructions for the experimental tasks. The
distance between the participant and the LCD monitor
was set at 50 cm. At the beginning of the experiment, an
instruction for one of the three task types (PME, PME +
MI, or PME +AME) appeared on the LCD monitor for
5 s, after which the participants were given a variable rest
period (10–15 s) to prepare for the given task. The partici-
pants performed the designated task for 10 s immediately
after a short pure-tone beep sound, which was also used
as a prompt to fix their gaze at a fixation cross at the cen-
ter of the monitor to prevent any potential loss of concen-
tration. This procedure was repeated twenty times in a
session, as shown in Fig. 2. Each participant was adminis-
tered six sessions in total, two sessions (40 trials = 20 tri-
als × 2 sessions) for each of three tasks. The order of the

tasks was randomly determined. The following paragraphs
provide detailed descriptions of the three tasks.

� PME - The right index finger of the subject was
automatically moved by an in-house hardware system
that was designed to enforce the bending and stretching
of a finger with a constant speed of 1 Hz (see fig. 3 for
the schematics of the system). During the task, the
participant was asked not to perform either MI or AME.

� PME + MI - The participants simultaneously
performed both PME and MI. They imagined
tapping the right index finger with the same speed
as that enabled with the hardware system while the
right index finger was automatically moved by the
device. During the task period, they were asked not
to perform voluntary motor execution of their right
index finger (AME).

� PME + AME - The subjects performed both PME and
AME using the right index-finger, with instructions
similar to the PME+MI task, except for performing
AME instead of MI. Note that the voluntary finger
movement did not actually influence the operation of
the device.

Data preprocessing
The concentration changes of oxy-, deoxy-, and total-Hb
were preprocessed using a series of signal processing algo-
rithms to reduce physiological and environmental noise.

Fig. 1 The configuration of optical probes. Red diamonds and blue circles illustrate position of source and detector of fNIRS system, and gray
squares indicate position of channels. Distance between a source and detector was 3 cm
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First, we applied a common average reference (CAR)
spatial filter to remove unwanted artifacts (e.g., artifacts
due to heartbeat or respiration). Several NIRS studies have
demonstrated that the CAR filter can effectively reduce
the global influence of heartbeat or respiration [19–21].
After applying the CAR, the NIRS data were band-pass
filtered using a fourth-order zero phase Butterworth filter
with a pass-band of 0.01–0.1 Hz to reduce physiological
noise and low-frequency drifts [22–27]. The filtered data
were then segmented, including 10 s task period and the
following 10 s rest period, considering that brain
hemodynamic responses are inherently delayed several
seconds compared to brain electrical activity. For baseline
correction, we used a base reset method, which adjusts
the first sample of each epoch to the zero point [28, 29].
Using the preprocessed data, we performed statistical
analysis to reveal the characteristics of hemodynamic
responses induced by the various experimental conditions
(PME, PME +MI, and PME+AME), and pattern
classification was applied to estimate the degree of active
involvement of the participants during CE.

Statistical analysis
Statistical analysis was carried out to investigate the differ-
ences between hemodynamic responses induced by PME
alone and the two CEs (PME +MI and PME+AME). To
construct the statistical dataset, each of 20 s epochs of oxy-,
deoxy- and total-Hb was segmented using a moving win-
dow of 3 s with a 50% overlap for each channel. The mean
of the hemodynamic responses in each segment was calcu-
lated, and then averaged over all epochs for each channel.
This procedure was separately applied to each chromo-
phore of NIRS (oxy-, deoxy, and total-Hb). Non-parametric
Friedman test was performed because the test data set did
not follow a normal distribution, and the Wilcoxon signed
rank test with Bonferroni correction was conducted as a
post-hoc analysis.

Pattern classification
We conducted single-trial pattern classifications to investi-
gate the feasibility of decoding the cognitive engagement of
users during the CE. In particular, the NIRS data recorded
during PME were distinguished from those recorded during

Fig. 2 A schematic diagram of the experimental paradigm. At the beginning of the experiment, instructions for one of the three types of tasks,
that is either, PME, PME +MI, or PME + AME appeared on the LCD monitor. One trial consisted of a randomized inter-task rest period ranging from
10 to 15 s and a task period of 10 s. A short beep sound followed before task and rest period

Fig. 3 Illustration of the in-house hardware system developed by the authors for this study
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PME+MI or PME+AME. Feature vectors for the classifica-
tion were independently constructed for each of the three
types of hemodynamic responses (oxy-, deoxy-, and total-
Hb), and NIRS channels showing statistically significant
difference between two conditions (PME vs. PME+MI or
PME vs. PME+AME) in the above mentioned statistical
tests were only considered (see Table 1 for the statistical ana-
lysis results).
Since the delay in task-related hemodynamic responses

generally varies from 3 to 8 s [16, 22, 30, 31], different time
windows with different sizes should be considered for ef-
fective determination of the delayed hemodynamic re-
sponses [32–34]. Thus, we used different moving window
sizes of 1, 2, 4, 5, and 10 s with a 50% overlap, and then ex-
tracted five different features from each time window. The

extracted five features were mean, variance, kurtosis, skew-
ness, and slope of NIRS signals, which were noted as prom-
ising candidates for features in previous NIRS studies [23,
32, 35]. As large numbers of features may lead to over-
fitting of a classifier, feature selection was performed using
the Fisher’s score method that has been frequently used for
NIRS-based pattern classification [23, 24, 27]. In this study,
linear discriminant analysis, which has been successfully
employed in several previous NIRS-based studies [24, 27,
32, 36], was used as a classifier. A 10 × 10 cross-validation
was applied for the evaluation of classification accuracy.
In addition, we attempted to improve the determination

of involvement of users during the CEs using a multiple-
trial classification approach. For this, we applied a voting
scheme to the same feature set extracted in the single-trial
classification procedure. A voting scheme has been widely
used for pattern classification, and shows enhanced per-
formance in terms of classification accuracy [37–40]. In the
voting method, multiple trials are conducted and a decision
is made when a majority of test trials agree with a specific
class. In this study, we applied a voting method with differ-
ent numbers of test trials, which were three, five, seven, and
eleven, for each class. For example, when the number of
test trials was three, thirty-seven of forty trials were ran-
domly selected for each class and used for building a classi-
fier, and the remaining three trials were tested for each
class. This procedure was iterated 1000 times, and classifi-
cation accuracy was attained by averaging all the classifica-
tion accuracies. The voting method was similarly applied
for the other numbers of test trials (five, seven, and eleven).

Performance evaluation
To validate the performance of the proposed approach,
we calculated three different metrics: accuracy, sensitiv-
ity, and specificity. When PME +MI or PME + AME is
assumed to be positive condition and PME is negative
condition, the three metrics are defined as

Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ;
Sensitivity ¼ TP= TPþ FNð Þ; and
Specificity ¼ TN= FPþ TNð Þ;

where TP, TN, FP, and FN represent the numbers of true
positives (correctly identified positive condition), true neg-
atives (correctly identified negative condition), false posi-
tives (positive condition incorrectly identified as negative
condition), and false negatives (negative condition incor-
rectly identified as positive condition), respectively.

Results
Comparison of hemodynamic responses induced by
different conditions
Figure 4 illustrates the grand-averaged topographic maps of
oxy-, deoxy-, and total-Hb concentration changes for three

Table 1 Detailed results of statistical analysis

Hb Type Channel No. Side Time
Period (sec)

Post-hoc Results

Oxy-Hb 3 ipsi 9 to 12 1 vs 2* (+)

13 ipsi 9 to 12 *1 vs 2** (+)

21 ipsi 0 to 30 1 vs 2* (+)

27 ipsi 9 to 12 1 vs 2* (+)

33 contra 6 to 9 *1 vs 2** (+)

34 central 6 to 9 1 vs 2* (+), 1 vs 3* (+)

39 ipsi 9 to 12 *1 vs 2* (+), 1 vs 3** (+)

Deoxy-Hb 17 ipsi 9 to 12 *1 vs 2** (−)

17 ipsi 12 to 15 *1 vs 2** (−)

26 ipsi 0 to 3 1 vs 2* (−)

38 contra 3 to 6 1 vs 3* (−)

Total-Hb 15 contra 6 to 9 1 vs 2* (+), 1 vs 3* (+)

15 contra 9 to 12 *1 vs 2* (+), 1 vs 3** (+)

16 central 6 to 12 1 vs 3* (+)

25 central 9 to 12 1 vs 3* (+)

27 ipsi 6 to 9 1 vs 2** (+), 1 vs 3** (+)

27 ipsi 9 to 12 1 vs 2** (+), 1 vs 3** (+)

31 ipsi 6 to 9 *1 vs 2* (+), 1 vs 3* (+)*

31 ipsi 9 to 12 *1 vs 2* (+), 1 vs 3** (+)

35 ipsi 6 to 9 *1 vs 2* (+), 1 vs 3** (+)

35 ipsi 9 to 12 *1 vs 3** (+)

36 ipsi 9 to 12 1 vs 3* (+)

37 contra 0 to 3 *1 vs 2** (+)

38 contra 3 to 6 1 vs 2* (+)

39 ipsi 9 to 12 1 vs 3* (+)

40 ipsi 6 to 9 1 vs 2** (+), 1 vs 3* (+)*

40 ipsi 9 to 12 1 vs 2* (+), 1 vs 3* (+)

ipsi ipsilateral hemisphere, contra contralateral hemisphere, central central area
1: PME, 2: PME +MI, 3: PME + AME;
*p-value < 0.05, **p-value < 0.01;
(+): A < B in A vs B, (−): A > B in A vs B;
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different conditions. It is clearly observed from the figure
that the modulation of hemodynamic responses with CE
tasks (PME+MI and PME+AME) was broader and stron-
ger than PME alone. In particular, increase in hemodynamic
responses is observed around the bilateral motor areas dur-
ing CE tasks, while hemodynamic responses induced by
PME alone are localized in the contralateral motor cortex.
Table 1 shows the detailed results of the statistical ana-

lysis performed to investigate the difference between PME
alone and CE tasks. Seven channels in oxy-Hb (ch. 3, 13,
21, 27, 33, 34, and 39), three channels in deoxy-Hb (ch.
17, 26, and 38), and eleven channels in total-Hb (ch. 15,
16, 25, 27, 31, 35, 36, 37, 38, 39, and 40) showed statisti-
cally significant differences among different conditions.

Results of single- and multiple-trial pattern classification
Figure 5 shows the classification accuracies of each subject
when “subject-specific” best feature set was used for the
single-trial classification. PME and PME+MI conditions
could be classified with an average classification accuracy of
70.34%. Of the eight subjects, four showed a classification
accuracy of higher than 70%, which is marginal accuracy
for determining the reliability of binary classification [41–
43]. Similarly, PME and PME+AME could be classified
with an average classification accuracy of 68.97%.

Figure 6 shows the accuracy of multiple-trial classifica-
tions with respect to the number of test trials. As shown
in the figure, higher classification accuracy was obtained
with a higher number of trials. Nevertheless, the classifi-
cation accuracy was almost saturated when more than
five test trials were used. Table 2 shows the individual
classification accuracies when five trials were tested. The
average classification accuracies were 80.55% for PME
vs. PME +MI and 80.11% for PME vs. PME + AME.

Discussion
Feasibility of monitoring active engagement during CE
During the neurorehabilitation procedure, active participa-
tion of patients is a crucial factor to foster better recovery
of the damaged brain region [44]. It is important to assess
whether patients are actively engaged in the given neuror-
ehabilitation programs. If therapists can accurately monitor
the change of cognitive engagement during the rehabilita-
tion program, the effect of rehabilitation can be improved
as timely feedback can be provided to the patient. Unfortu-
nately, however, methods to quantitatively assess active par-
ticipation of the user during CE have rarely been
developed. To the best of our knowledge, only one study
with EEG has demonstrated that active movement can in-
duce larger event-related desynchronization (ERD) than
passive movement [45]. The study classified EEG data

Fig. 4 Topographic map of concentration change of oxy, deoxy-, and total-Hb for each task, such as passive exercise (PME), combinatory exercises
(PME +MI or PME + AME). Blue points indicate the positions of channels
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recorded during active and passive motor tasks using
features derived from ERD with an average classification ac-
curacy of about 80%. The authors insisted that EEG might
be used to assess cognitive engagement during motor re-
habilitation in stroke patients. Although the study reported
the feasibility of evaluating the cognitive engagement of the
user during the rehabilitation program by classifying PME
and AME, it did not estimate the active involvement of the
user during the CE rehabilitations. In this study, we have
investigated whether the voluntary involvement of the user
during CEs can be identified using NIRS. Our experimental
results showed that the PME alone and CE tasks could be

classified with a fairly high classification accuracy, slightly
higher than 80%, using a multiple-trial classification (see
Table 2). A previous EEG study [45] reported sensitivity,
specificity and accuracy values of 83.55%, 80.16%, and
81.82%, respectively, in classifying PME and PME+MI.
Although the motor task used in the previous EEG study
was different from that used in our study, the performance
metrics of our approach (sensitivity: 85.26%, specificity:
75.84%, and accuracy: 80.55%) were comparable to those of
the EEG study, suggesting that NIRS can also be used to
assess the user’s cognitive engagement during the motor
rehabilitation program with CE tasks.

Fig. 5 Individual classification accuracy of single-trial pattern classification. Bar with red dotted border shows average classification accuracy. PME
vs PME +MI and PME vs PME + AME indicate classification PME versus PME + MI and PME versus PME + AME, respectively. The characters in each
bar show best feature set used for each individual

Fig. 6 Classification accuracies with respect to the number of trials used for the classification. A black dotted vertical line indicates a saturation
point. Red triangle and blue rectangle indicate average accuracies of single-trial pattern classification, respectively
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Hemodynamic responses during CE tasks
Some of the previous studies have reported brain activa-
tion induced by CE tasks using different neuroimaging
modalities [12, 13] such as fMRI and EEG. In an fMRI
study, Joa et al. reported an increment of brain activa-
tion in the SMA, M1, primary somatosensory area (S1),
secondary somatosensory area (S2), and cerebellum dur-
ing CE while simultaneously performing PME and AME.
An EEG study [13] also reported stronger brain activa-
tions in bilateral sensorimotor areas and the SMA dur-
ing active than passive tasks. In the present study, we
observed the hemodynamic responses during the CE
tasks using NIRS. The hemodynamic responses of the
CE tasks were significantly broader and stronger than
those of the PME alone (see Fig. 4 and Table 1), which is
in line with the results of the previous fMRI and EEG
studies [12, 13]. Specifically, hemodynamic responses
were increased in the ipsilateral as well as contralateral
areas during CE tasks, which is also in agreement with
the results of some of the previous studies that showed
bilateral brain activations during MI or AME [9, 46–48].

Limitations and future prospects
One of the main goals of this study was to confirm whether
there is significant difference in hemodynamic responses in-
duced by PE and CE using NIRS. Thus, we recruited eight
healthy participants and analyzed hemodynamic responses
acquired during the course of the rehabilitation program
based on CE. In this study, patients with brain lesions were
not involved. As different brain activation patterns can be
observed in patients with stroke or other central nervous
system diseases [49, 50], experiments with patients need to
be conducted in future.
This study was also carried out to confirm the feasibil-

ity of assessing the cognitive engagement of users using
NIRS during CE-based rehabilitation. Although we could
obtain feasible classification accuracies, high enough to

evaluate whether the user actively conducted MI or
AME during CEs, online experiments need to be con-
ducted in future to further prove the practical applicabil-
ity of NIRS-based assessment of cognitive engagement
during CE. Despite these limitations, our results are
meaningful because we have demonstrated the feasibility
of using fNIRS for evaluating the cognitive engagement
of users during CEs for the first time.

Conclusions
The main objective of this study was to confirm whether
fNIRS can serve as a useful tool to assess cognitive engage-
ment during motor rehabilitation programs based on CE.
We observed significant differences between hemodynamic
responses induced by the PME alone and CE tasks, and ob-
tained meaningful classification performance, to identify
whether users are actively involved in given motor tasks,
using the induced hemodynamic responses. Our experi-
mental results demonstrated that hemodynamic responses
induced during CE tasks can be potentially used to identify
the voluntary engagement of users during CE-based motor
rehabilitation interventions, thereby providing useful feed-
back that can promote more active involvement of users.
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