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Abstract. A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promising
neuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focused
on enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated the
performances of a variety of mental task combinations in order to determine the mental task pairs that are best
suited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses while
seven participants performed eight different mental tasks. Classification accuracies were then estimated for all
possible pairs of the eight mental tasks (8C2 ¼ 28). Based on this analysis, mental task combinations with rel-
atively high classification accuracies frequently included the following three mental tasks: “mental multiplication,”
“mental rotation,” and “right-hand motor imagery.” Specifically, mental task combinations consisting of two of
these three mental tasks showed the highest mean classification accuracies. It is expected that our results
will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific
mental task combinations. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.7.077005]

Keywords: mental task classification; brain-computer interface; near-infrared spectroscopy; binary communication; locked-in
syndrome.

Paper 140063RR received Feb. 1, 2014; revisedmanuscript received Jun. 18, 2014; accepted for publication Jun. 20, 2014; published
online Jul. 18, 2014.

1 Introduction
There are numerous individuals with physical disabilities, for
whom a variety of human–machine interface (HCI) systems
have been developed. These systems are based on a variety
of electrical or nonelectrical biosignals, such as electromyo-
grams (EMGs),1,2 electrooculograms (EOGs),3,4 sip-and-puff
signals,5 head movements,6 and tongue movements.7 Disabled
individuals who still have the ability to move specific parts
of their bodies can use these types of HCI systems, but these
systems cannot be applied to those who are unable to move
due to locked-in syndrome (LIS). Brain-computer interface
(BCI) technology can help the patients with LIS to communicate
with the outside world using their brain activity.

BCI is a technology that provides a direct communication
pathway between the brain and external devices without the
need for any muscular movements.8 In general, a BCI system
can be implemented based on two different approaches: an inva-
sive method or a noninvasive method. An invasive BCI system
uses a bundle of microelectrodes directly implanted into the
brain to record the neuronal-spiking activities. The invasive
BCI enables high-precision control of external devices due to
its high-quality brain signals, whereas the biocompatibility of
the implanted microelectrodes and high risk of surgery are
still crucial issues to be solved.9–11 Currently, the noninvasive
BCI approach has been studied more actively than the invasive
BCI methods.12 To implement noninvasive BCI systems, various
brain signal recording modalities have been used such as
electroencephalography (EEG),13–15 NIRS,16–18 functional

magnetic resonance imaging (fMRI),19,20 and magnetoencepha-
lography (MEG).21 Among these, EEG has been most widely
used due to its high temporal resolution, reasonable hardware
price, and portability.12,22,23

Recently, there has been growing interest in the NIRS-based
BCI systems because NIRS is generally less susceptible to
gross electrophysiological artifacts caused by eye blinks, eye-
ball movements, and muscle activity.16 So far, various mental
imagery tasks have been used for NIRS-based BCI studies,
such as hand motor imagery,18,24 mental arithmetic
tasks,16,17,25,26 music imagery,16,26 object rotation,25 and letter
padding.25 Most of these NIRS-based BCI studies attempted
to classify a pair of mental tasks with the goal of achieving
the highest possible classification accuracy for the binary
communication of patients with LIS.

To increase the BCI performance, previous NIRS-based BCI
studies have developed advanced signal processing techniques
and machine learning methods.16–18,24–27 However, some sub-
jects did not show a classification accuracy high enough to
be used for practical binary communications (less than 70%)
because they failed to produce the distinct and consistent
brain activity patterns expected when performing given mental
tasks. Previous BCI studies have reported that this so-called
“BCI illiteracy” phenomenon occurred in approximately 15%
to 30% of the individuals who participated in various types
of BCI experiments.28–31

One of the solutions to circumventing the BCI illiteracy issue
would be using individualized or customized mental task com-
binations instead of using a fixed set of mental tasks. However, it
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is difficult to select an optimal combination of mental tasks that
can elicit distinct brain activity patterns and guarantee the best
classification accuracy, because testing a large number of mental
tasks for each individual would be a long and tedious prelimi-
nary process. In our experience, testing more than eight mental
tasks in a single experiment is not efficient, because participants
generally lose their focus due to mental fatigue. Therefore, stud-
ies investigating the intrinsic characteristics of mental tasks are
necessary in order to more efficiently search for optimal mental
task combinations for each individual. For example, mental task
pairs showing a low classification accuracy can be excluded
from the candidate mental task set, or vice versa. Since the num-
ber of available mental tasks that have been used in the BCI
literature is very large (over 20), it is highly desirable to accu-
mulate a series of references reporting the results of preliminary
test experiments performed with different candidate mental
tasks. However, no previous NIRS-based BCI studies have
investigated optimal combinations of mental tasks with the
aim of determining the best task combination among all possible
pairs of various mental tasks in terms of classification accuracy.

The goal of this study was to investigate whether there are
any combinations of mental tasks that are relatively more advan-
tageous in increasing the classification performance of NIRS-
based BCI systems. To compare the classification accuracies
of various mental task combinations, we measured task-related
concentration changes of oxygenated, deoxygenated, and total
hemoglobin ([oxy-Hb], [deoxy-Hb], and [total-Hb]), while
seven participants were carrying out eight different mental
tasks. For the binary classification, we constructed four different
feature sets for [oxy-Hb], [deoxy-Hb], [total-Hb], and a combi-
nation of [oxy-Hb] and [deoxy-Hb], and then a linear discrimi-
nant analysis (LDA) algorithm was applied to the features
picked up by the Fisher criterion. The average classification
accuracy for each of all possible mental task combinations
(8C2 ¼ 28) was estimated by a 10 × 10-fold cross-validation.

2 Methods

2.1 Participants

Seven healthy participants took part in this study (six males and
one female; 24 to 30 years old). None of them had a previous
history of neurological, psychiatric, or other severe diseases that
might influence the experimental results. The research goal and
the experimental procedure were explained in detail to each
participant before the experiment. The subjects signed written
consents and received monetary reimbursement for their
participation. The study was reviewed and approved by the
Institutional Review Board committee of Hanyang University.

2.2 Mental Tasks

Eight different mental tasks were selected based on previous
EEG-based or NIRS-based BCI studies.16–18,24–26,32 During
the experiments, the participants were asked to use consistent
strategies for each mental task to minimize inter-trial variability
and not to make any movements. The following paragraphs pro-
vide the definitions of each mental task.

1. Left-hand motor imagery (LMI): kinesthetic imagina-
tion of left-hand movement.

2. Right-hand motor imagery (RMI): kinesthetic imagi-
nation of right-hand movement.

3. Foot motor imagery (FMI): kinesthetic imagination of
foot movement.

4. Mental singing (SING): singing a song internally. The
national anthem was selected as the song to reduce the
inter-subject variability.

5. Mental subtraction (SUB): sequential subtraction of a
small number (e.g., 6) from a three-digit number as
quickly as possible (e.g., 159, 153, or 147). The pre-
viously used pairs of numbers were not repeated to
prevent the participants from becoming accustomed
to the problem.

6. Mental multiplication (MUL): nontrivial multiplica-
tion of a pair of two-digit numbers as quickly as pos-
sible (e.g., 16 × 27). The pairs of two-digit numbers
were not repeated to prevent the participants from
becoming accustomed to the problem.

7. Geometric figure rotation (ROT): mental rotation of a
given three-dimensional (3-D) geometric figure. In
order to give the participants a concrete feeling of
this task, we showed them a short movie clip, in
which a 3-D geometric figure (hexahedron) was rotat-
ing at a constant velocity before the experiment. The
participants were instructed to imagine the rotation of
the geometric figure as shown in the movie clip.

8. Mental character writing (WRT): internal writing of
four given Korean characters. Different words with
particular meanings were used for each trial.

2.3 Experimental Paradigm

Figure 1 shows the overall experimental paradigm used in this
study. Before each session, a preparation time was given for
10 s, during which the participants waited for an upcoming
instruction without making any movements. At the beginning
of each trial, an instruction indicating one of the eight mental
tasks was randomly presented for 5 s, during which the partic-
ipants had to prepare for the mental task to be performed. For the
SUB, MUL, and WRT tasks, the participants were asked to
memorize a pair of two numbers, two-digit numbers, and
four characters, respectively. A pure-tone beeping sound was
presented for 125 ms, and then a fixation cross appeared at
the center of the monitor for 15 s, which was the signal to
start performing the designated mental task. After the participant
performed the given mental task for 15 s, an empty screen was
presented for a variable duration from 10 s to 15 s. This pro-
cedure was repeated twice for each mental task in one session.
A total of 10 sessions were conducted, and thus each participant
carried out 20 trials for each mental task.

2.4 Near-Infrared Spectroscopy Data Recording

For the data recording, we used a multichannel NIRS imaging
system (FOIRE-3000, Shimadzu Co. Ltd., Kyoto, Japan).
Figure 2 shows the optode configuration used in this study.
As shown in Fig. 2, 16 sources with wavelengths of 780,
805, and 830 nm, and 15 detectors were attached to each par-
ticipant’s scalp. The center optode was placed on Cz according
to the international 10–20 system (a standard electrode
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placement rule for EEG), and the inter-optode distance was set
to 3 cm based on the previous NIRS studies reporting that the
3-cm inter-optode distance is ideal for measuring cortical hemo-
dynamic responses.16,26,33 The task-related concentration
changes of hemoglobin were recorded at 50 different scalp loca-
tions with a sampling rate of 10 Hz.

2.5 Near-Infrared Spectroscopy Data Analysis

2.5.1 Preprocessing

The recorded raw light intensities of the three wavelengths (780,
805, and 830 nm) were converted into the concentration changes
of oxygenated, deoxygenated, and total hemoglobin ([oxy-Hb],
[deoxy-Hb], and [total-Hb]), using the modified Beer-Lambert
law. Optical signals measured on the scalp are generally accom-
panied by several physiological signals that are not directly
related to the cognitive activities.34–38 The most dominant com-
ponent is heart rate (arterial pulsation) showing a fundamental
spectral peak around 1.4–1.8 Hz.37,39 Breathing and Mayer
waves are two other physiological components observed at
approximately 0.3 and 0.1 Hz frequencies, respectively.37–39

To remove these spontaneous activities from the recorded
NIRS signals, a zero-phase low-pass filter with a cutoff fre-
quency of fc ¼ 0.09 Hz (fourth-order Butterworth) was applied

to each hemoglobin response. In addition, a zero-phase high-
pass filter with a cutoff frequency of fc ¼ 0.01 (fourth-order
Butterworth) was used to remove the low-frequency baseline
drifts. The frequency band of 0.01 to 0.09 Hz (or 0.1 Hz)
has been widely used for filtering out the spontaneously gener-
ated physiological components from the NIRS signals. 16,27,39–42

Note that the filtering process was applied to each session of
which the total duration was about 530 s, before segmenting
the NIRS data.

2.5.2 Feature extraction

Various types of BCI features have been used to classify hemo-
dynamic responses to different mental states, such as ampli-
tude,17,18,24,26,27,43–45 slope,16,27,42 variance,24,43 skewness,24,43

kurtosis,24,43 root mean square,43 zero crossings,43 wavelet coef-
ficients,25 and laterality.27 Some studies used raw light intensity
signals directly, without transforming them into concentration
values of hemoglobin.16,26,45 In this study, we used the mean
hemoglobin concentration values over predefined time periods
as candidate features, because they have been most widely used
for NIRS-based BCI studies.17,18,24,27,43,44 To extract the task-
related NIRS features, we used the 15-s epoch recorded
while the participants were carrying out each mental task
(see Fig. 1). The hemodynamic responses to mental activity

Fig. 1 A schematic diagram describing the experimental paradigm.

Fig. 2 The configuration of sources, detectors, and NIR channels used in this study. The red and blue
circles indicate the 16 sources and 15 detectors, respectively. The gray numbered squares represent the
50 channels. The distance between adjacent optodes was set to 3 cm.
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are generally observed with a time delay of 5–8 s,16,24,46 but this
varies among individuals and mental task types. Therefore, to
capture the task-specific hemodynamic responses more accu-
rately, we used three different window sizes of 5, 10, and
15 s, and consequently tested six different time windows,
i.e., 0–5, 0–10, 0–15, 5–10, 5–15, and 10–15 s, to extract
the candidate features. The features were extracted by simply
averaging the hemoglobin responses in each time window,
and four different candidate feature sets were constructed for
[oxy-Hb], [deoxy-Hb], [total-Hb], and a combination of [oxy-
Hb] and [deoxy-Hb]. The combination of [oxy-Hb] and
[deoxy-Hb] feature set was constructed by simply putting
together the [oxy-Hb] and [deoxy-Hb] feature sets into a single
feature set. Since six features were extracted for each of the 50
NIRS channels, the total numbers of the extracted features
were 300 for the [oxy-Hb], [deoxy-Hb], and [total-Hb]
feature sets (6 features × 50 channels), and 600 for the
combination of [oxy-Hb] and [deoxy-Hb] feature set
(6 features × 50 channels × 2 signal types ([oxy-Hb] and
[deoxy-Hb])).

2.5.3 Feature selection

It is well known that an excessive number of features can cause
not only the overfitting of the training data, but also an increase
in the learning time of a pattern classifier due to irrelevant or
redundant features contained in the high-dimensional feature
vector. This will eventually degrade the overall classification
performance of the trained classifier. Therefore, feature selection
is an indispensable step in every classification problem. In order
to reduce the dimensionality of the feature vector as well as to
select the best feature subset, we used the Fisher score, one of
the most widely used feature selection methods that has been
successfully applied to previous NIRS-based BCI studies.16,27,42

The Fisher score was estimated for each element of the con-
structed feature vector using

FSk ¼
ðμi − μjÞ2
s2i þ s2j

; (1)

where μ and s2 represent the mean and variance, respectively,
and the subscripts i and j represent two different classes.

The subscript k designates the k’th feature element. A higher
Fisher score implies that the distance between features in differ-
ent classes is larger and the variance between features in the
same class is smaller. Thus, the top N features with the highest
Fisher scores are generally selected for the classification. In this
study, we selected the top five features for classification based
on a previous NIRS-based BCI study, which reported that clas-
sification accuracy is no longer increased when the number of
features selected by the Fisher criterion is five or six.16

2.5.4 Classification

To prevent potential biases in estimating classification accuracy,
we used a 10 × 10-fold cross-validation with an LDA classifier
that has been most widely used in NIRS-based BCI stud-
ies.16,17,24,25,27,42,43,45 The whole dataset (20 trials for each
class) was randomly split into 10 subsets each with the same
number of trials (two trials per class). Nine subsets were
used to train an LDA classifier, and the other subset was
used for the estimation of classification accuracy. This pro-
cedure was repeated until every subset was tested, and the aver-
age classification accuracy was then evaluated. This “ten-fold
cross-validation” was repeated 10 times with reshuffled subsets.
In each cross-validation step, the top five features were selected
independently, using the Fisher scores as described in the pre-
vious section. Since the 10 × 10-fold cross-validation was inde-
pendently applied to each subject, the top five features varied
among subjects. The classification accuracy was estimated
for all 28 possible combinations of two mental tasks using
the following four feature sets: [oxy-Hb], [deoxy-Hb], [total-
Hb], and a combination of [oxy-Hb] and [deoxy-Hb].
Figure 3 illustrates an intuitive example of the classification
process, where the best two features were used to classify
two different mental tasks (MUL versus ROT).

3 Results
Since classification accuracy should be greater than 70% for a
binary BCI system to be used for practical communication pur-
poses,47 only mental task combinations with a classification
accuracy over 70% were regarded as meaningful task combina-
tions in this study.

Fig. 3 An example of a cross-validation step, when the MUL and ROT tasks were classified using the
[oxy-Hb] feature set of the participant P6. (a) Feature values from 20 trials are displayed for each class on
a two-dimensional feature space. (b) A linear discriminant analysis (LDA) classifier (green dotted line) is
constructed using 18 trials of each class (red and blue circles), and the other two trials of each class (gray
circles) are used for the evaluation of accuracy. (c) The remaining two trials of each class (red and blue
circles) are then classified by the constructed LDA classifier.
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Figure 4 summarizes the mental task classification results
of each participant for four feature set types: ([oxy-Hb],
[deoxy-Hb], [total-Hb], and a combination of [oxy-Hb] and
[deoxy-Hb]), in which a rectangle filled with black color implies
that the classification accuracy of the corresponding pair of men-
tal tasks exceeded 70%. The “meaningful”mental task combina-
tions varied amongparticipants aswell as varyingwith the feature
sets used, but the combination of RMI andMUL tasks and that of
MUL and ROT tasks showed classification accuracies of over
70% in most participants regardless of the feature sets.

Figure 5 shows the mean classification accuracies of all pos-
sible mental task combinations, those of RMI and MUL combi-
nations and those of MUL and ROT combinations, with respect
to different feature sets. The classification accuracies averaged
over all 28 possible combinations of mental tasks were slightly
over the level of random chance (¼50%). However, the combi-
nation of RMI and MUL tasks and that of MUL and ROT tasks
showed mean classification accuracies around 70% for most fea-
ture sets. Specifically, the combination of MUL and ROT tasks
showed mean classification accuracies of over 70% in three of
four feature sets (70.57% for the [oxy-Hb] feature set, 71.53%
for the [deoxy-Hb] feature set, and 74.39% for the combination
of [oxy-Hb] and [deoxy-Hb] feature set). The combination of
RMI and MUL tasks showed a mean accuracy over 70%
when the [oxy-Hb] feature set was used (70.1%). Note that
the above two mental task combinations (RMI versus MUL,
and MUL versus ROT) always ranked first or second in the clas-
sification accuracy among all 28 task combinations regardless of
the feature set types.

To explore further which mental task was most frequently
selected in the mental task combinations with a classification
accuracy over 70%, we counted the number of times that
each mental task was included in the “meaningful” task combi-
nations shown in Fig. 4. As shown in Fig. 6, three mental tasks,
RMI, MUL, and ROT, were most frequently included in the
meaningful mental task combinations. This result is in line
with the previous results that the combination of RMI and
MUL tasks and that of MUL and ROT tasks resulted in a higher
classification accuracy than the other mental task combinations.
These results suggest that the three selected mental tasks, RMI,

oxy-Hb deoxy-Hb total-Hb [oxy-Hb] + [deoxy-Hb] 
P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7 

LMI, RMI 

LMI, FMI 

LMI, SING 

LMI, SUB 

LMI, MUL 

LMI, ROT 

LMI, WRT 

RMI, FMI 

RMI, SING 

RMI, SUB 

RMI, MUL 

RMI, ROT 

RMI, WRT 

FMI, SING 

FMI, SUB 

FMI, MUL 

FMI, ROT 

FMI, WRT 

SING, SUB 

SING, MUL 

SING, ROT 

SING, WRT 

SUB, MUL 

SUB, ROT 

SUB, WRT 

MUL, ROT 

MUL, WRT 

ROT, WRT 

Fig. 4 Mental task classification results of each participant for four different feature set types, where a
filled rectangle implies that the classification accuracy of the corresponding pair of mental tasks
exceeded 70%.

Fig. 5 Mean classification accuracies of all possible combinations of
mental tasks (denoted by “All”), those of the RMI and MUL combina-
tions (denoted by “RMI vs. MUL”), and those of the MUL and ROT
combinations (denoted by “MUL vs. ROT”) for different feature sets.
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MUL, and ROT, have the potential to yield higher classification
accuracy than the other mental tasks.

Figures 7(a) and 7(b) show the hemodynamic responses aver-
aged across all subjects at the most frequently selected channels
in the cross-validation processes, for RMI and MUL tasks and
MUL and ROT tasks, respectively. The hemodynamic responses
elicited by different mental tasks were significantly different at
the selected channels, thereby making it possible to discriminate
two different mental tasks with reasonable accuracy. Moreover,
small standard errors computed across all subjects for each
hemodynamic response indirectly show the high reliability of
our experimental results.

Figures 8 and 9 show the grand-averaged [oxy-Hb] and
[deoxy-Hb] responses, respectively, for three different mental
tasks (RMI, MUL, and ROT tasks). The [oxy-Hb] responses
acquired during RMI and ROT tasks showed similar patterns
in frontal areas (ch. 37–ch. 50), but the difference between
the two task conditions was increased in parieto-occipital
areas. The [oxy-Hb] responses during the ROT task became
more similar to those during the MUL task around the posterior
areas. On the other hand, the [deoxy-Hb] responses of three
mental tasks did not show any consistent spatial patterns.

Since we used a relatively small number of trials for each
mental task (n ¼ 20) and large numbers of features (>300),
there is a possibility that high classification accuracy (>70%)
in some mental task combinations might arise by chance. To
verify this, we newly generated eight datasets each consisting
of 20 trials by randomly shuffling trials in the original datasets
(i.e., exchanging trials between different classes), and then we
repeated the same classification procedure (10 × 10-fold cross-
validation) with the newly generated datasets. As a result, the
number of meaningful combinations of mental tasks (classifica-
tion accuracy >70%) was significantly decreased from 84
(10.7% of all mental task combinations) to 7 (0.9% of all mental
task combinations) when the newly generated datasets were
used for the validation. Our simulation results showed that
about 8% of the mental task combinations with high-classifica-
tion accuracy in the original validation results could arise by
chance, but it is expected that such a small portion (8%)
might not affect the overall tendency of our results and our con-
clusion. In Fig. 4, two selected mental task combinations, com-
bination of RMI and MUL tasks and that of MUL and ROT
tasks, showed the meaningful classification accuracy in 31
cases, which is about 37% of all meaningful combinations
(n ¼ 84) and is overcoming the others in numbers. Therefore,
even when we assume that 2 or 3 cases were selected by chance
(with the 8% probability) in these two task combinations, the
overall tendency would not be affected at all.

4 Discussion
In order to implement a high-performance NIRS-based BCI
system, different mental states should be discriminated with
a high-classification accuracy. Most previous NIRS-based
BCI studies have mainly focused on enhancing classification
accuracy with the state-of-the-art signal processing methods
and machine learning algorithms with the aim to increase the
overall performance of a BCI system.16–18,24–26 However, if a
BCI user cannot generate distinct brain signals related to certain
mental tasks, even the most advanced methods might not be
able to classify those mental tasks. In the present study, in
order to provide a useful reference for the selection of optimal
mental task combinations, we investigated the suitability of a
variety of mental task combinations for BCI based on mental

Fig. 6 The number of times that each mental task was included in the
mental task combinations with a classification accuracy of over 70%.

Fig. 7 Grand-averaged [oxy-Hb], [deoxy-Hb], and [total-Hb] responses recorded during (a) RMI andMUL
tasks and (b) MUL and ROT tasks. The shaded regions indicate standard errors computed across all
subjects for each hemoglobin response.
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imagery tasks. To the best of our knowledge, the present study
is the first that investigates which mental task combinations can
be better choices in designing individualized NIRS-based BCI
systems.

From the analysis results, we confirmed that the combination
of MUL (mental multiplication) and ROT (mental figure rota-
tion) tasks and that of RMI (right-hand motor imagery) and
MUL tasks might be the most promising mental task combina-
tions among the 28 combinations tested in this study. In particu-
lar, the mental task MUL was most frequently observed in the
meaningful combinations of mental tasks (>70%), suggesting
that the MUL task generates a brain activity pattern most dis-
tinguishable from the other mental tasks. It is also noteworthy
that the combination of MUL and ROT tasks was the only men-
tal task combination with which all participants showed classi-
fication accuracies over 70%. In the case of the combination of
RMI and MUL tasks, unfortunately, one participant (P1) did not
show the meaningful classification accuracy (>70%) for any
feature sets. The combination of MUL and ROT tasks and
that of RMI andMUL tasks showed relatively high classification
accuracy for most participants, but optimal mental task combi-
nations were intrinsically different among the participants. It
would be ideal to use mental task combinations customized
for each individual in developing a practical BCI system.
However, the process to select the most suitable combinations
of mental tasks is a time-consuming task, thereby making a BCI
user feel exhausted even before using the BCI system. We think

that our results can be utilized as a useful reference to simplify
the procedure of selecting optimal mental task combinations,
thereby reducing the time needed for preliminary tests. In our
future studies, we will continue to test new mental tasks together
with those that showed good classification performance in the
present study.

Many previous NIRS studies have reported that brain activa-
tion generally induces an increase in [oxy-Hb] and a decrease in
[deoxy-Hb], but in our results, inverted [oxy-Hb] and [deoxy-
Hb] response patterns were sometimes observed in some mental
task conditions (Figs. 8 and 9). Such inverted hemodynamic
responses have also been frequently observed in other previous
studies.39,48–51 Particularly, two studies using the NIRS signals
acquired during mental arithmetic tasks also showed a signifi-
cant decrease in [oxy-Hb] and an increase in [deoxy-Hb] in the
frontal lobe.39,48

In this study, we used hemoglobin concentration values aver-
aged over predefined time periods as features for classification
because those features have been most widely used in NIRS-
based BCI studies.17,18,24,27,43,44 Besides the mean values of
hemoglobin concentrations, various types of features have
been introduced in NIRS-based BCI studies, such as
slope,16,27,42 variance,24,43 zero crossings,43 and wavelet coeffi-
cients.25 Apart from finding optimal mental task combinations, a
systematic comparison of different feature types would be a
meaningful research topic, which we would like to investigate
in future studies.

Fig. 8 Grand-averaged [oxy-Hb] responses recorded during RMI, MUL, and ROT tasks for all channels.
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