
Received October 20, 2019, accepted November 5, 2019, date of publication November 11, 2019,
date of current version November 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2952613

Development of an Online Home Appliance
Control System Using Augmented Reality and an
SSVEP-Based Brain–Computer Interface
SEONGHUN PARK , HO-SEUNG CHA , AND CHANG-HWAN IM , (Member, IEEE)
Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea

Corresponding author: Chang-Hwan Im (ich@hanyang.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) under Grant 2019R1A2C2086593 and in part by the
Institute for Information and communications Technology Promotion (IITP) funded by the Korean Government (MSIT) under Grant
2017-0-00432 (Development of Non-Invasive Integrated BCI SW Platform to Control Home Appliances and External Devices by user’s
thought via AR/VR interface).

ABSTRACT In this study, we implemented a new home appliance control system by combining elec-
troencephalography (EEG)-based brain-computer interface (BCI), augmented reality (AR), and internet of
things (IoT) technologies. We adopted a steady-state visual evoked potential (SSVEP)-based BCI paradigm
for the implementation of a fast and robust BCI system. In the offline experiment, we compared the
performances of three BCIs adopting different types of visual stimuli in an AR environment to determine the
optimal visual stimulus. In the online experiment, we evaluated the feasibility of the proposed smart home
system using the optimal stimulus by controlling three home appliances in real time. The visual stimuli were
presented on a see-through head-mounted display (HMD), while the recorded brain activity was analyzed
to classify the control command, and the home appliances were controlled through IoT. In the offline
experiment, a grow/shrink stimulus (GSS) consisting of a star-shaped flickering object of varying size was
selected as the optimal stimulus, eliciting SSVEP responses more effectively than the other options. In the
online experiment, all users could turn the BCI-based control system on/off whenever they wanted using
the eye-blinking-based electrooculogram (EOG) switch, and could successfully perform all the designated
control tasks without difficulty. The average classification accuracy of the SSVEP-BCI-based control system
was 92.8%, with an information transfer rate (ITR) of 37.4 bits/min. The proposed system exhibited an
excellent performance, surpassing the best results reported in previous studies regarding external device
control based on BCI using an HMD as rendering device.

INDEX TERMS Augmented reality, brain-computer interface, electroencephalography, internet of things,
steady-state visual evoked potential.

I. INTRODUCTION
Brain-computer interface (BCI) is a technology that provides
a direct communication channel between a user and the
external environment using the user’s brain activity [1]–[4].
Several noninvasive techniques have been utilized to record
the brain activity of users, including near-infrared spec-
troscopy (fNIRS), magnetoencephalography (MEG), and
electro-encephalography (EEG). Among these, EEGhas been
the most widely employed modality, because it is afford-
able, easy to use, and portable. EEG-based BCIs have been
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intensively developed for a variety of applications, such
as communication [5]–[7], rehabilitation [8], [9], entertain-
ment [10], and control of electric devices [11]–[14].

Recently, as the number of people with disability and
elderly people who require special care in daily life activities
have rapidly increased [15], [16], the necessity of developing
‘‘smart home’’ systems tailored for such people has arisen.
In line with this trend, the implementation of home automa-
tion systems using BCI technology has drawn increasing
interest [17]. For example, Takano et al. developed a home
appliance control system with an infrared remote controller
and augmented-reality head-mounted display (AR-HMD)
based on a P300-based BCI [18]. Wolpaw et al. were the
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first to attempt to implement an AR-based home automation
system. However, the information transfer rate (ITR) [19] of
the BCI system was not sufficiently high for utilization in
practical scenarios (ITR = 5.4 bits/min), owing to the low
signal-to-noise ratio of the P300 component. A BCI system
based on steady-state visual evoked potential (SSVEP), a
periodic brain response evoked by the presentation of a visual
stimulus flickering or reversing at a specific frequency, can
also be used to implement an external device control system.
Recently, Lo et al. implemented an external device control
system that can be potentially used in hospitals [12] using
SSVEP-based BCI because it is well known that an SSVEP-
based BCI exhibits a stronger performance than a P300-based
BCI in terms of the ITR and robustness [6], [20]. However,
Lo et al. employed a relatively ‘‘bulky’’ LCD monitor as the
rendering device to present visual stimuli, constraining the
flexibility and mobility of the BCI-based home automation
system in real-world scenarios. Indeed, although using an
AR-HMD as the rendering device can provide a potential
solution to this problem, no previous study on SSVEP-based
home appliance control systems has employed an AR-HMD
to present visual stimuli.

On the other hand, investigating the feasibility of employ-
ing an AR-HMD for SSVEP-based home appliance control
systems is important, because the low contrast ratio of AR-
HMDs weakens the contrast between the visual stimuli and
the background, possibly degrading the overall performance
of the BCI system [21], [22]. Note that typical LCD monitors
have a contrast ratio of 1:1,000 or higher, while AR-HMDs
have a contrast ratio lower than 1:400 [21].

In the present study, we investigated whether an SSVEP-
based home appliance control system with AR-HMDs
exhibits a sufficiently strong performance for utilization in
practical scenarios. To determine the optimal visual stimu-
lus that maximizes the performance of an AR-HMD-based
BCI system, various types of visual stimuli eliciting SSVEP
responses were tested. We then implemented an online home
appliance control system by incorporating an AR-based BCI
system with the optimal visual stimulus. Then, internet of
things (IoT) technology was employed to enable wireless
communications among devices. The performance of the
developed smart home system was evaluated using online
experiments with a number of healthy participants wearing
AR-HMDs, where three home appliances were controlled in
real time.

II. METHODS
A. EXPERIMENT I – OFFLINE EXPERIMENT TO
DETERMINE OPTIMAL VISUAL STIMULI
1) SUBJECTS
Twenty-one healthy adults (13 males and eight females, aged
23.3 ± 2.7 years) with normal or corrected-to-normal vision
participated in our experiments; however, the data of one
participant were excluded in the further analysis because
no spectral peak was observed at any SSVEP frequency

(see Fig. S1 in the Supplementary Information file), and
thereby EEG data of 20 participants were analyzed in the
further analysis. This so-called ‘‘BCI-illiteracy’’ is a well-
known issue in EEG-based BCI [23]. All participants were
informed of the details of the experiments and provided
written consent. This study and the experimental paradigm
were approved by the institutional review board of Hanyang
University, Republic of Korea (IRB No. HYI-14-167-11).

2) VISUAL STIMULI FOR SSVEP-BASED BCI
In this study, three different types of visual stimuli were tested
under an AR environment: 1) pattern-reversal checkerboard
stimulus (PRCS), 2) flicker stimulus (FS), and 3) grow and
shrink stimulus (GSS). All the visual stimuli were presented
on the see-through display of anMSHololensTM (Microsoft,
Company, Redmond, WA, USA). An additional PRCS stim-
ulus (LCD-PRCS) was presented on an LCD monitor as
the reference of a typical SSVEP visual stimulus, result-
ing in four types of stimuli in total (Fig. 1). PRCS is a
widely employed visual stimulus to elicit SSVEP responses,
where the checkerboard pattern is reversed at a constant
frequency [20], [24], [25]. FS is another commonly used
visual stimulus, which elicits SSVEP responses by changing
the luminance of the stimulus at a constant frequency [26].
Unlike PRCS and FS, which change the contrast or luminance
of the visual stimulus, the proposed GSS stimulus changes its
size and luminance concurrently to elicit SSVEP responses.
It has recently been reported that periodic motion of a visual
stimulus can also elicit a periodic VEP response, similar to
the conventional SSVEP responses [27]–[29]. This is often
referred to as the ‘‘steady-statemotion visual evoked potential
(SSMVEP)’’ [29]. Our GSS stimulus not only changes its size
from small to large (grow) and back to small (shrink) at a
constant frequency, but also flickers at the same frequency
(please watch the attached Supplementary movie or visit a

FIGURE 1. The stimuli used in the offline experiment (Experiment I).
(a) LCD-PRCS, (b) PRCS, (c) FS, and (d) GSS. Note that only LCD-PRCS
was presented on an LCD screen, while the others were presented
on a see-through AR display.
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YouTube link [30] for higher quality video, which was taken
during the online experiment).

For each of three visual stimulus types, four stimuli
with different frequencies (7.5, 8.57, 10 and 12 Hz) were
generated. These frequencies were selected considering the
refresh rate of the rendering device and previous studies
that investigated the relationship between stimulation fre-
quency and SSVEP responses [31], [32]. Note that both
the Hololens and LCD monitor had the same refresh rate
of 60 Hz, which is an integer multiple of the four target
frequencies.

3) EXPERIMENTAL PARADIGM
The offline experiment consisted of four sessions to test the
four different stimulus types (PRCS, FS, GSS, and LCD-
PRCS). In each block, a randomly selected type of stimuli
was presented. Each session consisted of 20 trials, each of
which lasted for 5 s with a 2-s inter-stimulus interval (ISI).
In each trial, four visual stimuli with different frequencies
were presented (see Fig. 1), and the participant was instructed
to remain focused on one of these without eye blinks and body
movements. The participant rested for at least 3 min between
consecutive blocks, to avoid eye fatigue.

A reference stimulus, called LCD-PRCS, was presented on
a 24-inch LCDmonitor with a resolution of 1920×1080 pix-
els, and the distance between the participant and the monitor
was maintained at 60 cm. The visual angle between the center
of the screen and each stimulus was set to 5.6 ◦, and the same
visual angle was also applied to the visual stimuli presented
on the see-through Hololens display.

The visual stimuli on the LCDmonitor were generated and
controlled using Cogent Graphics and the Cogent2000 Tool-
box [33]. The visual stimuli in the AR environment were
controlled using an in-house program developed with Unity
(Unity Technologies ApS, San Francisco, CA, USA), and a
UDP communication program developed using C#.

4) DATA RECORDING AND PREPROCESSING
The EEG data were recorded at a 2,048Hz sampling rate from
33 electrodes (Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FC5,
FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7,
P3, Pz, P4, P8, PO3, POz, PO4, O1, Oz, and O2) attached
to the scalp surface, using the BioSemi ActiveTwo system
(Biosemi, Amsterdam, The Netherlands). A CMS active elec-
trode and a DRL passive electrode were used to form a
feedback loop for the amplifier reference. Details of the
feedback loop can be found at [34]. The recorded EEG data
were down-sampled to 512 Hz to reduce the computational
cost, and then re-referenced to Cz. To remove low frequency
drift and power line noise (60 Hz), the re-referenced data
were band-pass filtered with 2 and 54 Hz cutoff frequencies,
using a zero-phase Butterworth infinite impulse response
filter implemented in MATLAB (MathWorks, Inc., Natick,
MA, USA). We confirmed that the orders of re-referencing
and bandpass filtering did not affect the EEG signal-to-noise
ratio.

5) DATA ANALYSIS
For the classification of SSVEP responses recorded while a
participant was viewing a specific visual stimulus, a recently
developed algorithm called the multivariate synchronization
index (EMSI) [35] was adopted. EMSI first calculates the
synchronizations between a given EEG signal and reference
signals generated with stimulation frequencies and their har-
monics, and then finds a specific stimulation frequency that
maximizes the synchronization index. More detailed expla-
nations on the EMSI algorithm can be found in [35]. In this
study, three harmonic frequencies were taken into account.

To determine the optimal duration of the visual stimuli pre-
sentation, we evaluated the ITR with respect to the different
window sizes based on the following formula:

ITR =
60
T
(log2 N + P log2 P+ (1− P) log2(

1− P
N − 1

)), (1)

where T represents the window size, N denotes the number
of possible targets and P is the classification accuracy.

In the data analysis, an electrode set consisting of O1,
Oz, and O2 was tested to investigate whether the proposed
system can achieve feasible performance with an electrode
set having been typically used in SSVEP-based BCI studies.
Conversely, we also calculated the classification accuracies
for all possible combinations of three electrodes out of the
nine electrodes attached above the Occipital lobe (P7, P3,
Pz, P4, P8, PO3, POz, PO4, O1, Oz, and O2) and selected
the three electrodes that exhibited the highest classification
accuracy for each participant. We then compared the highest
individual classification accuracies of the four SSVEP stimuli
types. The individually selected electrode sets were employed
in the following online home appliance control experiments.

6) STATISTICAL ANALYSIS
Because the testing dataset did not follow a normal distribu-
tion according to theKolmogorov-Smirnov test, the Friedman
andWilcoxon signed rank tests were performed to test the sta-
tistical significance. The significance level for the Friedman
test was set to 0.05, and a Bonferroni-corrected Wilcoxon
signed rank post-hoc analysis was employed to test the sta-
tistical significance.

B. EXPERIMENT II – ONLINE HOME APPLIANCE
CONTROL EXPERIMENT
1) SUBJECTS
Although we attempted to enroll all the participants who
participated in the offline experiment again for the online
experiment, three of the 20 participants were unable to partic-
ipate because of personal reasons (e.g., leave of absence for a
full semester). Consequently, 17 participants took part in the
online experiment.

2) SELF-REGULATING ON/OFF SWITCH
For the participants to switch the home appliance control
system on/off by themselves, an eye blink-based switch
was adopted. For the accurate detection of eye blinks,
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FIGURE 2. (a) A schematic diagram of the proposed home appliance
control system. The visual stimuli were presented to the user via a
Hololens, which was controlled by the middleware. The physiological
signals recorded from the user were analyzed by real-time signal
processing software, and then sent to the middleware. Based on the
analysis results, the middleware generated an appropriate command and
delivered this to the selected home appliance. The experiment was
conducted in an environment in which the Hololens, middleware, signal
processing program, and home appliances were all connected to the
same Wi-Fi network. (b) Real pictures of the developed platform.

a recently developed method called multiple-window sum-
mation of first derivatives in a sliding window (MSDW) was
adopted [36]. An electrooculogram (EOG) signal recorded
from the Fp1 channel was utilized. When a participant
blinked their eyes more than four times within 3 s, the home
appliance control system was switched on (or off).

3) EXPERIMENTAL PARADIGM
A schematic diagram of the proposed home appliance control
system is presented in Fig. 2. We developed a program called
‘‘middleware’’ to mediate the communication between the
Hololens, signal processing software inMATLAB, IoT-based
device control software, and IoT-supported home appliances.
Three home appliances were controlled in this experiment: a
robotic vacuum, air cleaner, and humidifier. The device con-
trol software was developed using the Samsung IoT device
control API (Samsung Electronics, Company, Ltd., Seoul,
South Korea), as all the home appliances were Samsung
products. The device control software was merged with the
middleware.

The proposed home appliance control system consisted of
two stages: ‘‘device selection’’ and ‘‘command selection.’’
The hierarchical constitution of the system and the stimuli
employed in the experiment is illustrated in Fig. 3. Once a

participant switched on the system by repeatedly blinking,
four visual stimuli were presented on the AR display. In
this ‘‘device selection’’ stage, three stimuli were assigned
to three different home appliances, and the other stimulus
was assigned to the ‘‘EXIT’’ function. Each stimulus was
represented by intuitive icons, as depicted in Fig. 3b. Once
the target device was selected based on the SSVEP responses,
the middleware made the Hololens present a new set of visual
stimuli, through which detailed device control was possible
(see Fig. 3c, 3d, and 3e). In this ‘‘command selection’’
stage, four SSVEP stimuli with three icons representing
different control commands and one ‘‘back to the previous
step’’ icon were presented. Participants were able to control
a pre-selected device by looking at the command stimuli,
or to go back to the previous ‘‘device selection’’ stage by
looking at the ‘‘back to the previous step’’ icon. Further-
more, the participants could turn off the system either by
looking at the ‘‘EXIT’’ icon in the ‘‘device selection’’ stage
or repeatedly blinking their eyes again anytime during the
system operation. The time assigned for each selection trial
was fixed to 2.5 s.

In the ‘‘device selection’’ stage, the ISI was fixed to 1 s.
In the ‘‘command selection’’ stage, the first ISI was set to 1 s,
and the following ISIs were set to 4 s, to allow the participants
time to confirmwhether the device operated correctly accord-
ing to their intentions. In the ‘‘command selection’’ stage,
the participants were able to run four different commands
including ‘‘back to the previous step’’ (see Table 1). For
example, when a participant selected the robotic vacuum in
the ‘‘device selection’’ stage, they could turn on the vacuum
and then execute ‘‘turbo mode’’ by consecutively selecting
the second and third stimuli. If the system misidentified
the participant’s intention, then they could select the ‘‘back
to the previous step’’ command to return to the previous
selection step.

Before the main experiment, each participant was given
10–20 min to become accustomed to the BCI-based device
control system. The experiment started when the participant
announced that they completely understood the system and

TABLE 1. The presented commands of each home appliance
in ‘Command Selection’ stage.
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FIGURE 3. Overall procedure of the online experiment (Experiment II). (a) The hierarchical constitution of the proposed home appliance control
system. Repeated eye blinks start the control system. After delivering a designated command to a selected home appliance, the control system is
turned off by repeated eye blinks of the user. (b) The visual stimuli presented in the ‘‘device selection’’ stage. (c), (d), and (e) show the visual
stimuli presented in the ‘‘command selection’’ stage to control the robotic vacuum, air cleaner, and humidifier, respectively.

were fully ready to use the system. There were two different
experimental sessions with different scenarios, referred to as
single-command and multicommand sessions. In the single-
command session, the participants were instructed to turn
on the system, execute a single pre-instructed command,
and then turn off the system. This process was defined as
one block. Instructions were provided to the participants
before starting each block. The participants were asked to
execute all commands for each device, resulting in 12 blocks
(three devices × four commands) in the single-command
session. If a participant made a mistake or the classifier
misidentified the participant’s intention, then he or she had
to correct the wrong operation and then conduct the pre-
instructed task again to complete the block. For example,
assume that the given instruction is to select a robotic vac-
uum and execute ‘‘turbo mode.’’ If the robotic vacuum was
turned off either through a mistake by the participant or a
misclassification, then the participant could turn it on by
looking at the ‘‘ON/OFF’’ icon and then look at the ‘‘turbo
mode’’ icon again to complete the task. As another example,
if the participant was pre-instructed to select ‘‘air cleaner’’
but ‘‘humidifier’’ was selected, they could go back to the
previous ‘‘device selection’’ stage by looking at ‘‘back to
the previous step’’ icon and focus on the ‘‘air cleaner’’ icon
again. Otherwise, they could turn off the whole system and
turn it on again by blinking repeatedly and then select the
‘‘air cleaner’’ in the ‘‘device selection’’ stage. The partic-
ipants could tackle this situation according to their own
preferences.

In the multicommand session, each block consisted of
turning on a designated device, executing four different com-
mands consecutively, and turning off the device, resulting in
three blocks (three devices). The order of executing com-
mands was predefined and communicated to the participants
before starting each block. As in the single-command session,
the participants needed to correct errors (misclassifications)
occurring during the task using their own approach.

In this study, a ‘‘trial’’ was defined as a single presentation
of visual stimuli. For example, in the single-command session
the minimum number of trials required to complete a task
(one block) was two (one trial for ‘‘device selection’’ and the
other trial for ‘‘command selection’’ in the case where there
was no error). Therefore, to complete the single-command
session, at least 24 trials (three devices × two stages ×
four commands) were required. Likewise, to complete the
multicommand session, at least 15 trials (three devices ×
(one ‘‘device selection’’+ four ‘‘command selection’’)) were
required.

Between two successive sessions, participants watched
three video clips for approximately 12 min to investigate
the time required to operate the eye-blink-based switch and
evaluate the false positive rate (FPR) of this operation. The
participants were instructed to repetitively blink their eyes to
operate the eye-blink-based switch at a random time commu-
nicated by the experimenter for each video, when the switch
did not actually work: The experimenter paused the video and
asked the participants to blink their eyes. Once the eye blink
detection algorithm successfully detected more than four eye
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blinks within 3 s, the experimenter played the video again.
At the end of each video, the participants were instructed to
repetitively blink their eyes once again.

4) DATA RECORDING AND ANALYSIS
Based on the results of the offline experiments, the three elec-
trodes that yielded the highest classification accuracy for each
participant were selected for the online experiments. All the
preprocessing and SSVEP classification methods were the
same as in the offline experiments. TheWilcoxon signed rank
test was utilized to test the statistical significance between
the performances in both experiments, as the dataset did
not follow a normal distribution. In addition to classification
accuracy and ITR, efficiency was also calculated to evaluate
the actual availability of the proposed system. Efficiency con-
siders not only the classification accuracy of the system, but
also the cost to correct errors occurred by misclassification.
An efficiency equal to 1 represents that no error occurred
during the system operation (ideal case), while an efficiency
close to 0 implies that the system is affected by errors so
severely that the performance measures including ITR and
classification accuracy may not be meaningful.

III. RESULTS
A. EXPERIMENT I – OFFLINE EXPERIMENT TO
DETERMINE OPTIMAL VISUAL STIMULI
To determine the optimal visual stimulus for an SSVEP-
based BCI in an AR environment, we first evaluated the
classification accuracy for each stimulus type when the same
universal electrodes (O1, Oz, and O2) were used for each
participant. The averaged accuracies with respect to different
window sizes are shown in Fig. 4. For every window size,
GSS exhibited the best performance in terms of the classi-
fication accuracy, followed by FS and PRCS. The Friedman

FIGURE 4. Comparison of the mean classification accuracy for the three
visual stimuli in the AR environment when the universal electrode
configuration was used (O1, Oz, and O2). Error bars indicate the
standard errors across the participants (∗ represents Bonferroni-
corrected p < 0.05).

FIGURE 5. Comparison of the mean classification accuracy for the three
stimuli in the AR environment when three individualized electrodes were
used for each participant. Error bars indicate the standard errors across
the participants. (∗ represents Bonferroni-corrected p < 0.05).

test indicated a statistical significance for all window sizes
except 2 s (2 s: χ2 = 5.92, p = 0.052; 2.5 s: χ2 = 7.64, p <
0.05; 3 s: χ2= 9.89, p< 0.01; 3.5 s: χ2= 10.66, p< 0.005;
4 s: χ2= 7.66, p< 0.05; 4.5 s: χ2= 6.03, p< 0.05; 5 s: χ2=
7.09, p< 0.05). The Wilcoxon signed rank post-hoc test with
Bonferroni correction showed that the classification accuracy
for GSS was significantly higher than that for PRCS for all
window sizes in which the Friedman test showed a statistical
significance (2.5 s: p < 0.05; 3 s: p < 0.05; 3.5 s: p < 0.05;
4 s: p < 0.05; 4.5 s: p < 0.05; 5 s: p < 0.05). No statistically
significant difference was found between the other pairs.

Figure 5 illustrates the classification accuracy for each
stimulus type when the three individually best electrodes
were utilized. As shown in the figure, the performance was
clearly improved in all three cases, whereas the overall trends
did not change compared to the results shown in Fig. 4.
The Friedman test indicated a statistical significance for all
window sizes except 5 s (2 s: χ2 = 6.49, p < 0.05; 2.5 s:
χ2 = 9.11, p < 0.05; 3 s: χ2 = 9.58, p < 0.01; 3.5 s: χ2 =
11.22, p< 0.005; 4 s: χ2= 7.26, p< 0.05; 4.5 s: χ2= 6.64,
p < 0.05; 5 s: χ2 = 5.77, p = 0.056). The Wilcoxon signed
rank post-hoc test with Bonferroni correction showed that the
classification accuracy for GSS was significantly higher than
that for PRCS for all window sizes in which the Friedman
test showed a statistical significance (2 s: p < 0.05; 2.5 s:
p < 0.05; 3 s: p < 0.05; 3.5 s: p < 0.05; 4 s: p < 0.05;
4.5 s: p < 0.05). No statistically significant difference was
found between the other pairs. Because GSS consistently
demonstrated a better performance than the other stimuli in
the AR environment, we adopted this as the visual stimulus in
the following online experiments. The individually selected
electrode locations are provided in Table S1 included in the
Supplementary Information file.

To confirm the extent to which the use of an AR
display reduces the overall performance of SSVEP-based
BCI compared to the conventional LCD-based SSVEP-BCI,
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FIGURE 6. Comparison of the mean classification accuracies for
LCD-PRCS and GSS. Error bars indicate the standard errors across the
participants. Note that the performance was calculated by using the
individualized electrode configuration.

we also compared the classification accuracy for GSS with
that of a conventional checkerboard visual stimulus presented
on an LCD monitor (Fig. 6). Whereas the performance of
LCD-PRCSwas consistently stronger than that of GSS for all
window sizes (the average difference is less than 5%), there
was no statistically significant difference. This result implies
that the use of a see-through display to present visual stimuli
somewhat degrades the overall performance of SSVEP-based
BCI, but this degradation may not be sufficient to prevent
utilization in practical scenarios.

To determine the optimal duration of the stimulus pre-
sentation, we evaluated the ITR and the classification accu-
racy with respect to different window sizes when GSS was
employed with the universal and individual electrode config-
urations (Fig. 7). Before determining the optimal duration,
we first tested whether there is a statistically significant
difference between the performances for the universal and
individualized electrode configurations using the Wilcoxon
signed rank test. As shown in Fig. 7, the individually
chosen electrode configurations outperformed the universal
electrode configuration in terms of both the classification
accuracy and ITR for many window sizes (Bonferroni-
corrected p < 0.05).

We selected 2.5 s as the optimal duration for stimulus pre-
sentation, based on the following observations: (i) Because
the ITR is inversely proportional to the window size, a shorter
window size yields a higher ITR. (ii) Although a 2 s window
size corresponded to the highest ITR, the accuracy for the
2 s window was only 82.5%. In contrast, the accuracy for the
2.5 s window size was sufficiently high (87.0%), even being
comparable to the accuracy for the 4 s window size (90.8%).
Note that the accuracy was almost saturated above the 4 s
window size.

Through this offline experiment, we confirmed that GSS
might be the optimal visual stimulus for SSVEP-based BCI
in an AR environment. In addition, we also confirmed that

FIGURE 7. Comparison of the mean classification accuracy and
information transfer rate (ITR) calculated with universal and
individualized electrode configurations for GSS with different window
sizes. Error bars indicate the standard errors across the participants (∗p <

0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.001, Wilcoxon signed rank test,
Bonferroni-corrected).

adopting the individualized electrode configurations could
result in a better performance, as already frequently reported
in previous SSVEP studies [5], [37], [38]. Therefore, we uti-
lized the individualized electrode configurations for each
participant in the online experiments. The raw EEG datasets
are available at [39].

B. EXPERIMENT II – ONLINE HOME
APPLIANCE CONTROL
Table 2 shows the classification accuracy and ITR achieved
for each participant in the online home appliance control
experiments (Experiment II). The total number of trials
indicates the number of trials each participant completed in
both the single-command and multicommand sessions. Each
participant completed a different number of trials, because
the number of errors occurring during the experiments was
different for each participant. The accuracy was evaluated as
(the number of correct trials) / (the number of total trials).
The average accuracy and ITRwere 92.8% and 37.4 bits/min,
respectively. In addition, the efficiency values were close
to 1 in all participants, demonstrating that the proposed
smart home system has a potential to be utilized in practical
scenarios.

The performance obtained in this study surpassed the best
results previously reported in the literature on BCI in an
AR environment [17], [18], [40]. There was no significant
difference between the performance in the offline experi-
ment (Experiment I) with individualized electrode config-
urations and in the online experiment (Experiment II) in
terms of either the classification accuracy (p = 0.73) or ITR
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TABLE 2. The experimental results in Experiment II.

(p = 0.84), as assessed by the Wilcoxon signed rank test
(Bonferroni-corrected).

Table 3 shows the average time required to switch the con-
trol system on or off using the eye-blink-based switch and the
FPR (false operation) of the switch for each participant. All
participants were able to switch the system on/off within 3 s,
and the average time required to switch the system on/off
was 2.6 s. Fifteen of the 17 participants exhibited an FPR of
zero, whereas only two participants showed false positives.
The average FPR was 0.015 times/min, or 0.891 times/h.
These experimental results suggest that the proposed home
appliance control BCI system could be utilized as a practical
system. A video clip illustrating the home appliance control
experiments is attached to this manuscript as a supplementary
movie file (or visit [30] for higher quality video). All the
online EEG raw datasets can be downloaded at [39].

IV. DISCUSSION
With the outstanding advances in medicine, healthcare, and
therapeutics, life expectancy is gradually increasing, and thus
the social burden of caring for elderly and paralyzed people
will soon become serious [41], [42]. The smart home system

TABLE 3. The performance of eye blink-based switch in Experiment II.

could provide a plausible solution to circumvent this problem.
In the present study, to develop a smart home system for
home appliance control that can be utilized in real-world
scenarios, we combined AR, IoT, and BCI technology. The
proposed AR-BCI-IoT-based home appliance control system
has a number of advantages over conventional smart home
systems, in that (i) the user is not required to stay in a
specific space to control a device as long as the device
is connected to a network; (ii) the user does not have to
move any part of their body to operate home appliances; and
(iii) most importantly, the user can manipulate the system
totally independently, without help from others. In the first
offline study, we compared three different types of visual
stimuli presented on an AR display to determine the optimal
visual stimulus to achieve the best performance for SSVEP-
based BCI. This has not been performed in any previous
AR-based BCI studies. Based on the offline experimental
results, we developed an online home appliance control
system that can be operated solely by a user, who wears
AR glasses. The experimental results demonstrated that the
proposed BCI-based home appliance control system can be
utilized in practical scenarios.
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The results of our offline experiments showed that the
mean accuracy of experiments with a stimulus on an LCD
monitor (LCD-PRCS) was consistently higher than that for
experiments with a stimulus on an AR-HMD display (PRCS,
FS, and GSS). Even the same types of stimulus (PRCS)
exhibited large differences of over 20% in the classification
accuracy for a certain window size. This large degradation
in the BCI performance may originate from the differences
between the intrinsic properties of an AR display and LCD
monitor. Unlike the LCD monitor, visual stimuli on an AR
display are overlaid on the surrounding scenes, disturbing
the user’s concentration on the visual stimuli. In addition,
the luminance change, or contrast of a visual stimulus is
not as clear as on an LCD monitor, which might also affect
the intensities of the SSVEP responses. A similar perfor-
mance degradation was also reported in a previous study on a
P300-based BCI in an AR environment [18]. For this reason,
we needed to introduce a new visual stimulus to improve
the overall performance of the SSVEP-based BCI system in
an AR environment. Our experimental studies showed that
the use of GSS as the visual stimulus for SSVEP-based BCI
could enhance the performance of our AR-BCI-IoT-based
home appliance control system to a level in which there was
no significant difference from the conventional LCD-based
stimulus presentation system.

Because GSS consistently exhibited the best performance
among the three tested visual stimuli in an AR environ-
ment, it was selected as the visual stimulus in the online
experiments. Considering that an AR display has a lower
contrast and clearness than an LCD monitor, it is thought
that GSS exhibited a better performance than the others on
the AR display because GSS not only relies on luminance
changes to elicit SSVEP responses, but also relies on motion.
This differs from the conventional PRCS and FS, which rely
solely on luminance changes to elicit SSVEP responses. Our
results suggest that new visual stimuli effectively eliciting
so-called ‘‘SSMVEP’’ ormotion-related visual evoked poten-
tial (mVEP) might be developed in future studies to further
enhance the performance of AR-based BCI.

In the online experiments, although no statistical signif-
icance was observed, the mean accuracy was improved by
5.8% compared to the offline experiments. This improvement
might be a result of the following two factors: (i) The partici-
pants were accustomed to the visual stimuli via the repetitive
experimental sequences, as shown in a previous study [43].
(ii) In contrast to the offline experiment, where no feedback
on the classification results was provided to the participants,
in the online experiment immediate feedback (i.e., operation
of home appliances) was available to the participants. A simi-
lar phenomenon has frequently been reported in previous BCI
studies [44]–[46].

Most BCI studies on the control of external devices such
as robots, wheelchairs, and home appliances, have used LCD
monitors to present visual stimuli [11], [12], [47]. Only a few
studies attempted to use an AR-HMD to present the visual
stimuli [17], [18], [48]. However, to the best of our knowledge

this is the first study to realize a practical home appliance
control system by combining AR, IoT, and BCI technologies.
Most importantly, our system outperformed all previously
reported external device control systems that employed HMD
as a rendering device (Table 4).

TABLE 4. Comparison of performances with previous BCI-based external
device control studies.

In spite of the recent advancements of information and
communication technologies, EEG-based BCIs have not
been incorporated with practical home automation systems
because the conventional EEG-based BCIs did not show high
performance and were not convenient to use. In this study,
we tried to overcome the limitations of the previous BCIs by
combining AR-HMD and IoT technology with the SSVEP-
based BCI. With AR-HMD, the BCI users do not need to
carry any display device. In addition, using the IoT technol-
ogy, the users can control external devices that are out of their
sight. For example, the users of our smart home system can
lock the front door or turn on a robotic vacuum located in a
living room, even when they are lying on a bed or staying in a
bathroom. In particular, it is expected that the proposed AR-
BCI-IoT-based home appliance control system can provide
the elderly and paralyzed people with freedom from being
cared for, thereby elevating their quality of life.

In comparison with the existing assistive technologies
including eye tracker and tongue switch, the proposed
AR-BCI-IoT system has many advantages: (i) Most of the
existing assistive technologies require calibration procedure
to train a classifier, but our system does not require any
calibration session. Although we individually selected an
electrode set to enhance the performance of the system, the
classification accuracy with a universal electrode set (O1, Oz,
andO2) also showed an accuracy high enough to be employed
for practical home appliance control (see Fig. 7). (ii) Our
home appliance control system provides the user with more
flexibility than the other assistive technologies. Thanks to
the AR-HMD device and IoT technology, our system is not
restricted by space as long as the device is connected to a
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wireless network. To date, most of the assistive technologies
have employed a ‘‘bulky’’ LCDmonitor as a rendering device
to present visual stimuli, markers, instructions, and visual
feedbacks. Using a wearable see-through HMD, the users do
not have to stay at a specific place any more. (iii) The conven-
tional assistive technologies including eye-tracker and tongue
switch also have some limitations. For example, the perfor-
mance of camera-based eye trackers can be affected by the
ambient light. Users of tongue switches might feel unpleasant
and uncomfortable because of the attachment of sensors on
the tongue. (iv) Some patients with severe paralysis, such
as patients with severe amyotrophic lateral sclerosis (ALS),
might lose the ability of controlling their eyeballs or tongue
muscles, making it difficult to use eye-trackers or tongue
switch. There have been a number of studies reporting that
late stage ALS patients who cannot use eye tracker systems
could successfully use SSVEP-based BCI systems [49]–[51].
In addition, the SSVEP-based BCI system implemented in
this study can be readily extended to a system with a larger
number of classes (even up to 30) [6], while it might not be
easy to increase the number of classes in the conventional
assistive technologies based on eye-tracker, EOG switch, and
tongue switch.

With the rapid advances in information and communication
technology, BCIs in AR and VR environments have begun
to be explored in recent years. Previous studies have demon-
strated that AR/VR-based BCIs have considerable potential
to be utilized in a variety of application fields, such as enter-
tainment [52], education [53], medicine [54], military [55],
robotics [17], [56], health care [53], and home automa-
tion [18]. Considering that modern AR and VR devices are
becoming more lightweight and easy to wear and are being
actively incorporated with EEG devices (e.g., Neurable Inc.,
http://www.neurable.com), these technologies are likely to be
commercialized in the near future. Lastly, in our future study,
the usability of our system would be tested with the elderly
and people with disabilities including patients with ALS.
In addition, we will try to increase the overall performance of
the proposed system by employing recently developed algo-
rithms for the classification of SSVEP responses [57]–[59].
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