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A Posteriori Error Estimation and Adaptive Node Refinement for Fast
Moving Least Square Reproducing Kernel (FMLSRK) Method
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Abstract: In the present study, a residual-based
a posteriori error estimation for a kind of mesh-
less method, called fast moving least square re-
producing kernel (FMLSRK) method is proposed.
The proposed error estimation technique does not
require any integration cells in evaluating error
norm but recovers the exact solutions in a virtual
area defined by a dilation parameter of FMLSRK
and node density. The proposed technique was
tested on typical electrostatic problems with gird
or random node sets and the simulation results
show that the proposed error estimation technique
can be applied to adaptive node refinement pro-
cess for more efficient meshless analysis of elec-
tromagnetic field.
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1 Introduction

Finite element method (FEM) has been widely
used in various scientific and engineering fields
to solve partial differential equations. FEM, how-
ever, has some defects such as time consuming
mesh generation and difficulty in treating small or
sophisticated objects inside a large analysis do-
main. To tackle such problems, recently, various
kinds of meshless methods have been developed
and introduced. For instances, smoothed particle
hydrodynamics (SPH) and element free Galerkin
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method (EFG) were developed by Gingold et al.
[Gingold, R. A.; Monaghan, J. J. (1997)] and Be-
lytschko et al. [Lu, Y. Y.; Belytschko, T.: Gu, L.
(1994)], respectively. Reproducing kernel parti-
cle method (RKPM) [Liu, W. K.; Jun, S.; Zhang,
Y. F. (1995)] and moving least square reproduc-
ing kernel (MLSRK) method [Liu, W. K.; Li,
S; Belytschko, T. (1996)] by Liu et al., partition
of unity finite element method (PUFEM) by Me-
lenk et al. [Melenk, J. M.; Babuška, I. (1996)],
and h-p Clouds by Duarte et al. [Duarte, C. A.;
Oden, J. T. (1996)] are also popular examples of
the meshless methods. Particularly, the meshless
local Petrov-Galerkin method(MLPG) and local
boundary integral equation method(LBIE)[Atluri,
S.N.;Kim, H.G.; Cho J.Y.(1999)] deserve men-
tioning, in which local weak form on the local
sub-domain defined at each node in a compu-
tational domain is used in conjunction with the
penalty approach for the essential boundary con-
dition. The MLPG method is extended to solv-
ing the convection diffusion [Lin H.; Atluri S.N.
(2000)] and viscous flow [Lin H.; Atluri S.N.
(2001)] problems, including the study on effi-
ciency for a variety of this method[Atluri S.N.;
Shen S. (2002)]. More recently, Kim et al. pro-
posed fast moving least square reproducing ker-
nel (FMLSRK) method [Kim, D. W.; Kim, Y.
(2003)], [Kim, D. W.; Kim, H. K. (2004)]. Ba-
sically, the method was based on the concepts of
the MLSRK method, but it had improved char-
acteristics such that both shape functions and all
of their derivatives could be evaluated simulta-
neously within a single equation, which made
the analysis procedure computationally more ef-
ficient. In case higher order derivative approxi-
mation is needed as in a meshfree point colloca-
tion strategy, the radial basis function could be a
candidate but its process is complicated, so that
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RBF-based differential quadrature method is pro-
posed to circumvent this complexity, which works
as similar as the finite difference method [Shu C.;
Ding H.; Yeo K.S. (2005)].

The meshless methods do not need to generate fi-
nite elements, but place finite number of nodes to
get approximated solutions. Since the solution ac-
curacy of FEM is significantly affected by qual-
ity of meshes, the meshless methods are promis-
ing for the problems with small objects inside a
large analysis domain, moving objects, very so-
phisticated geometry, and so on, for which high-
quality finite elements are hardly obtained. Fur-
thermore, adaptive strategy can be more readily
implemented in the meshless methods, because
one just needs to place new nodes on higher error
regions without generating new mesh structures.

The adaptive meshless analysis is relatively more
important than the adaptive finite element analy-
sis because the influence region of a shape func-
tion in most meshless methods is overlapped with
its neighboring ones, which results in less sparse
matrix than that of FEM and thus yields consider-
able computational burden. Hence, in order to re-
duce size of node set and enhance computational
efficiency, adaptive node refinement is of great ne-
cessity.

Both FEM and meshless methods need to estimate
error distributions to adaptively refine meshes or
nodes. While significant number of studies have
been performed to estimate a priori or a pos-
teriori error distribution of finite element solu-
tions, such as super-convergent patch recovery
(SPR), recovery by equilibrium in patches (REP)
and so on [Bugeda, G. (2002)], [Boroomand, B.;
Zienkiewicz, O. C. (1997)], [Ubertini, F. (2004)],
[Kvamsdal T.; Okstad, K. M. (1998)], the er-
ror estimators for meshless methods have rarely
been developed. The conventional approaches
to estimate error in meshless methods used ar-
tificial integration cells to evaluate error energy
norms [Gavete, L.; Cuesta, J. L.; Ruiz, A. (2002)],
but the use of such integration cells obviously
weaken the advantage of the meshless methods
which does not require any artificial mesh struc-
tures. In the present study, we obtained the ap-
proximated solutions of electrostatic problems us-

ing the FMLSRK method, and estimated the er-
ror distribution of grid or random node sets by a
recovery-based a posteriori error estimation tech-
nique, which is based on moving least square
(MLS) method and energy norm. The proposed
error estimation technique does not require any
artificial integration cells, but recover the exact
solutions inside a virtual area defined by a di-
lation parameter and node density. Simulations
on two typical electrostatic examples demonstrate
that the proposed technique is able to estimate rel-
ative errors of approximated solutions reasonably
and be applied successfully to the adaptive node
refinement process.

2 FMLSRK method

The FMLSRK method is a kind of meshless
method which can solve Poisson, stationary in-
compressible Stokes, and various electromag-
netic problems [Kim, D. W.; Kim, Y. (2003)],
[Kim, D. W.; Kim, H. K. (2004)]. Although
both Galerkin formulation and point collocation
scheme may be applied to implement the FML-
SRK method, point collocation is better in effi-
ciency than the Galerkin method [Kim, D. W.;
Kim, H. K. (2004)]. In FMLSRK, a locally ap-
proximated solution at near can be expressed as
follows:

Uh(x,x) = PT
m

(
x−x

ρ

)
M−1(x)

NP

∑
I=1

Pm

(
xI −x

ρ

)
(1/ρn)Φ(xI −x)u(xI). (1)

where is a complete basis polynomial vector up to
order m, ρ is a constant called a dilation parame-
ter, which controls the influence region of a shape
function, NP is the number of points in the local
area, is the solution at , n is the dimension of the
problem, and moment matrix is given as

M(x) =
NP

∑
I=1

Pm

(
xI −x

ρ

)
PT

m

(
xI −x
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)

(1/ρn)Φ(xI −x), (2)

where the window function is defined as

Φ(x) =

{
(1−‖x‖) j , when ‖x‖ < 1, j > 0

0, otherwise
(3)



A Posteriori Error Estimation and Adaptive Node Refinement 37

To implement the point collocation scheme, it
is sometimes necessary to obtain higher order
derivatives of shape functions because higher or-
der basis functions can result in more accurate so-
lutions. However, it is computationally expensive
to calculate all the higher order basis functions.
Compared to the other meshless methods, FML-
SRK method has a powerful characteristic that it
can evaluate all derivatives of the shape functions
up to the order of the basis polynomials in a sin-
gle equation simultaneously [Kim, D. W.; Kim,
Y. (2003)], [Kim, D. W.; Kim, H. K. (2004)]. The
α-th derivatives of the local approximation Eq.1
with respect to x is

DαUh(x,x) =
[

Dα PT
m

(
x−x

ρ

)]
M−1(x)

NP

∑
I=1

Pm

(
xI −x

ρ

)
(1/ρn)Φ(xI −x)u(xI). (4)

The α-th derivatives of the global approximation
can be obtained as follows, by taking the limit of
Eq.4 as x converges to x [Kim, D. W.; Kim, Y.
(2003)]:

Dα uh(x) = lim
x→x

DαUh(x,x)

=
α!

ρ |α |e
T
α M−1(x)

NP

∑
I=1

Pm

(
xI −x

ρ

)
Φ(xI−x)u(xI),

(5)

where, eα = (0, . . .,1, . . .,0)T is the α-th unit vec-
tor. We defined the α-th correction function Cα
and α-th kernel function Kα as

Cα(ρ ,xI −x,x) =
α!

ρ |α | e
T
α M−1(x)Pm

(
xI −x

ρ

)
,

(6)

Kα(ρ ,xI −x,x) = Cα(ρ ,xI −x,x)Φ(xI −x). (7)

Finally, the α-th derivatives of the global approx-
imation can be written as

Dα uh(x) =
NP

∑
I=1

Kα(ρ ,xI −x,x)u(xI). (8)

As seen from Eq.6, Eq.7 and Eq.8, the α-th
derivative can be readily evaluated just by multi-
plying a very simple function of α with a func-
tion of x that is independent upon α . There-
fore, once the function of x is evaluated, the α-th

derivatives of the shape functions can be evalu-
ated without additional heavy computations. For
more detailed explanations and derivation of the
FMLSRK method, please refer to the previous lit-
eratures [Kim, D. W.; Kim, Y. (2003)], [Kim, D.
W.; Kim, H. K. (2004)].

3 Error estimation

In FEM, energy norm of i-th element Ωi is gener-
ally defined as

||e||i =[∫
Ωi

[u(x)−u(x)h]T D−1[u(x)−u(x)h]dΩi

]1/2

,

(9)

where and are the exact and the approximated so-
lution, respectively, and ||e||i is the error norm of
Ωi. In many problems, however, it is hard to ob-
tain the exact solutions. Hence, one should esti-
mate exact solution through various kinds of re-
covery methods, such as least squares [Bugeda,
G. (2002)], [Boroomand, B.; Zienkiewicz, O. C.
(1997)], [Ubertini, F. (2004)], [Kvamsdal T.; Ok-
stad, K. M. (1998)], [Gavete, L.; Cuesta, J. L.;
Ruiz, A. (2002)]. When using (moving) least
square, the recovered solution is

urec(x) = pT (x) · (PT
ΩWPΩ)−1PT

ΩW, (10)

where is the basis function vector at , is the matrix
composed of basis function vectors at all points in
the local area Ω, and is a weight matrix. The error
is then redefined as

||e||i =
[∫

Ωi

[urec−uh]T D−1[urec−uh]dΩi

]1/2

.

(11)

Since no meshes are used in meshless methods,
i.e. Ωi is not defined, artificial integration cells
which are sectioned by grid or some specific rules
have been usually used for evaluating the error
norm of meshless methods [Gavete, L.; Cuesta, J.
L.; Ruiz, A. (2002)]. As mentioned before, how-
ever, the use of artificial integration cells may lose
the powerful advantage of the meshless methods
which does not need to generate artificial meshes
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at all. In the present study, we adopted the concept
of ‘virtual area’ and proposed a simple method to
evaluate the energy norm in FMLSRK. The vir-
tual area Si of i-th node is determined by dividing
the area of a circle whose center is i-th node and
radius is the dilation parameter of the FMLSRK
method by the number of nodes contained in the
circle. Then, the error norm for FMLSRK is de-
fined as

||e||i = ep,iSi, (12)

where, ep,i is the absolute value of the difference
between the recovered and approximated solu-
tions at i-th node. To obtain the recovered solu-
tions at each node, we also applied the same con-
cept (MLS) as Eq.10 except that the local area
Ω was not an integration cell as in [Gavete, L.;
Cuesta, J. L.; Ruiz, A. (2002)], but the circle de-
fined above.

For the adaptive node refinement, we need to eval-
uate the error distribution based upon a certain er-
ror indicator. In the present study, a local error
indicator ηi was defined as

ηi = ||e||i/||e||r, (13)

where, ||e||r is the desirable error norm. Since
the optimal distribution of nodes means that the
error norm is constant on the whole domain, or
the density of error is equally distributed, the
following condition should be satisfied for all j
( j = 1, . . .,N) where N is the number of nodes
[Bugeda, G. (2002)]:

||e|| j/Ω1/2
j = ||e||/Ω1/2, (14)

where ||e|| and Ω are the error and area of the
whole analysis domain, respectively. Since ||e|| j

that satisfies Eq.14 is the desirable error ||e||r at
each node, ηi can be rewritten as

ηi = (||e||i/||e||)(Ω/Ωi)1/2. (15)

In the present study, we determined new node lo-
cations for the next adaptive analysis step accord-
ing to the error indicator in Eq.15.

4 Results

The FMLSRK method was applied to two typi-
cal and simple electrostatic problems which are
presented in Figs. 1 and 2. Those models have
been frequently used to verify various error esti-
mation techniques because of their clear singular-
ity [Gavete, L.; Cuesta, J. L.; Ruiz, A. (2002)],
[Janicke, L.; Kost A. (1996)]. The FMLSRK so-
lutions in Figs. 1 and 2 show reasonable potential
distributions as expected.

4.1 Application to grid node set

The proposed error estimation technique was ap-
plied to the first electrostatic problem shown in
Fig. 1 and tested if the proposed error estimator
works reasonably. We first applied it to a regu-
lar grid-node set consisting of 96 nodes, shown
in Fig. 3(a). After obtaining the approximated
solutions from the FMLSRK method, error dis-
tribution was estimated using Eq.15. The result
of the error estimation for the initial node set is
presented in Fig. 3(b), where the values are pre-
sented in logarithmic scale and the darker color
represents the higher error regions. We can clearly
see that the regions near the singularity (inner cor-
ner of the L-shape domain) are darker than the
other regions, which demonstrates that the pro-
posed error estimation technique can estimate the
error distribution reasonably well.

In order to investigate the influence of the node
refinement upon the estimated error distribution,
we added 75 nodes to the initial node set and
constructed a new node set shown in Fig. 3(c).
It can be seen from the resultant error estimate
shown in Fig. 3(d) that the error around the re-
fined regions was significantly reduced. Figs. 3(e)
and 3(f) show the third level node refinement (44
nodes were added) around the singular point and
the resultant error distribution, respectively. It
can be seen from the figures that the error can
be reduced by the additional nodes as anyone can
expect, which clearly demonstrates that the pro-
posed error estimator can be used as a reasonable
error estimator for adaptive meshless analysis.

If we refine the node set without estimating the
errors to get the same accuracy around the cor-
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Figure 1: First electrostatic model for the FML-
SRK analysis and its solution. Both Dirichlet
and Neumann boundary conditions are presented
herein. This model has the singularity at the cor-
ner (10, 10)

Figure 2: Second electrostatic model for the
FMLSRK analysis and its solution. Both Dirich-
let and Neumann boundary conditions are pre-
sented herein. The model has the singularity at
(7,10)

ner, i.e. the gap between neighboring nodes is the
same as the shortest distance between two nodes
in Fig. 3(e), the number of nodes would be about
2500, which explains why we need to apply the
adaptive node refinement in the meshless analy-
sis.

(a)                                                            (b) 

(c)                                                        (d) 

(e) (f)

Figure 3: Error estimation and adaptive node re-
finement for grid node set: (a) Initial node set
consisting of 96 nodes; (b) Error distribution of
(a). The darker color represents the higher error;
(c) First-level node refinement. Number of nodes
= 171; (d) Error distribution of (c); (e) Second-
level node refinement. Number of nodes = 215;
(f) Error distribution of (e). The dark region was
reduced by the additional nodes. In all the figures
presented in this paper, logarithmic value of Eq.16
was used as the error indicator.

4.2 Application to random node set

In the previous section, we applied the proposed
error estimation technique to a grid node set and
investigated the influence of the node refinement.
In this section, we applied the proposed technique
to more practical random node sets and refined
node distribution based upon the estimated er-
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ror distribution. Fig. 4 shows the results of the
error estimation and the node set refined using
the error distribution. New nodes were randomly
placed around a node which has high error indi-
cator value over a threshold. The initial node set
(Fig. 4(a)) and the refined node set (Fig. 4(c)) in-
cluded 141 and 231 nodes, respectively. It can be
clearly observed from the Figs. 4(b) and 4(d) that
regions with higher error were significantly re-
duced by applying the adaptive node refinement.

                             (a)                                                          (b)  

(c) (d) 

Figure 4: Error estimation and adaptive node re-
finement for a random node set. New nodes were
placed beside a node which has high error indica-
tor: (a) Initial node set consisting of 141 nodes;
(b) Error distribution of (a). The darker color rep-
resents the higher error; (c) Refined node distribu-
tion consisting of 231 nodes; (d) Error distribution
of (c).

We then applied the proposed error estimation
technique to another electrostatic problem pre-
sented in Fig. 2. This model has the singularity
at the point between Dirichlet and Neumann con-
dition on the upper boundary. The node distribu-
tions and the resultant error distributions are pre-
sented in Fig. 5 in the same way as the previous
example. The use of adaptive node refinement did

not only reduce the higher error regions, but also
made the error distribution more homogeneous.

Please note from Eq.14 that the goal of the adap-
tive node refinement was flattening the error dis-
tribution by decreasing high-error region. In the
L-shape electrostatic model with random node set
(Fig. 4), the standard deviations of errors were
reduced from 5.02 to 4.21. In the other exam-
ple (Fig. 5), the standard deviations were also re-
duced from 6.21 to 4.65.

(a)                                                      (b)  

(c) (d) 

Figure 5: Error estimation and adaptive node re-
finement for random node set (second electro-
static example): (a) Initial node set consisting of
249 nodes; (b) Error distribution of (a); (c) Re-
fined node distribution consisting of 400 nodes;
(d) Error distribution of (c).

5 Conclusion

In this paper, a recovery-based a posteriori error
estimation technique for FMLSRK method is pro-
posed. The proposed error estimator evaluated by
MLS in virtual areas was applied to two electro-
static examples with singularity. It was verified
from the simulation studies that the suggested er-
ror estimation can not only estimate error distribu-
tion reasonably, but also be successfully used for
the adaptive node refinement. Although the pro-
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posed error estimator was applied only to FML-
SRK method, it can be generally applied to other
meshless methods if the dilation parameters are
determined a priori.
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